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Fig. 1. We provide a system that takes as input a mesh file (left) and outputs its constructive solid geometry (CSG) representation. The three key ideas are a)
use of carefully designed point samples to guide a purely discrete search problem (points, middle left), b) a divide-and-conquer algorithm to segment problems
to ensure success (colors, middle left), and c) use of program synthesis techniques to solve the hard discrete search problem in each segment. The output CSG
structure (middle right) correctly infers over 50 solid primitives and 18 boolean operators. A part of the solution (red box) is extracted for demonstration (right).

While computer-aided design is a major part of many modern manufactur-

ing pipelines, the design files typically generated describe raw geometry.

Lost in this representation is the procedure by which these designs were

generated. In this paper, we present a method for reverse-engineering the

process by which 3D models may have been generated, in the language of

constructive solid geometry (CSG). Observing that CSG is a formal grammar,

we formulate this inverse CSG problem as a program synthesis problem. Our

solution is an algorithm that couples geometric processing with state-of-

the-art program synthesis techniques. In this scheme, geometric processing

is used to convert the mixed discrete and continuous domain of CSG trees

to a pure discrete domain where modern program synthesizers excel. We

demonstrate the efficiency and scalability of our algorithm on several dif-

ferent examples, including those with over 100 primitive parts. We show

that our algorithm is able to find simple programs which are close to the

ground truth, and demonstrate our method’s applicability in mesh re-editing.
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Finally, we compare our method to prior state-of-the-art. We demonstrate

that our algorithm dominates previous methods in terms of resulting CSG

compactness and runtime, and can handle far more complex input meshes

than any previous method.
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1 INTRODUCTION
Computer-aided design (CAD) software has become a key part

of many modern mass-manufacturing pipelines over the last few

decades. CAD tools are parametric by design, allowing designers

to create easily modifiable shapes. This enables engineers to iterate

over the design parameters to improve the performance of objects or

to adapt existing designs so that they can be reused in new scenarios.

For this reason, there has been a growing interest in using parametric

CAD representations for fabrication-oriented design exploration

and optimization algorithms [Schulz et al. 2017; Shugrina et al. 2015].
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Unfortunately, CAD procedures are rarely readily available with

released models. The constructive parametric representations are

internal to CAD systems, which typically only allow for exporting

a design as a 3D mesh or a boundary representation (B-Rep). As a

result, there is a vast quantity of important legacy models whose

original procedural definitions have been lost in the years since

their creation. In addition, many crafted objects were not originally

designed in CAD systems at all, and many more products undergo

shop floor changes that make the original CAD files inaccurate. For

such models, the only available shape representations are 3D scans

of the manufactured design that necessarily incorporate noise due

to imperfections in the scanning process.

New techniques to reverse engineer CAD models from 3D shapes,

such asMonte Carlo samplingmethods and genetic algorithms, have

attracted the interest of many researchers. Central to any technique

is an expressive and concise representation. A natural choice of

parametric representation is constructive solid geometry (CSG) as it

is a well understood, widely accepted staple in modern CAD systems

and is compact in its representation. CSG encodes geometries as

trees that are constructed by recursively applying boolean operators

to primitive shapes [Requicha and Rossignac 1992]. Theory for the

automatic conversion of 3D models to CSG trees has been widely

studied for the past 20 years.

However, the current leading techniques either do not scale well

for large problems [Fayolle and Pasko 2016] or cannot produce

compact representations [Buchele and Crawford 2004]. Furthermore,

these methods assume the input shape is an exact B-Rep, as opposed

to a 3D model that can come from a low-resolution mesh or a noisy

3D scan. In this paper, we propose a new, scalable approach to

reverse engineer CAD models based on the realization that CSG is

simply a class of computer programs. This means that generating a

CSG tree can be framed as a program synthesis problem.

Program synthesis is a process by which computer programs

are generated from descriptions of their intended behavior. These

techniques seek to generate programs which not only satisfy their

specifications, but also do so as parsimoniously as possible. Program

synthesis has proven effective in a wide range of problem domains,

including synthesizing entity matching rules for databases [Singh

et al. 2017], inferring excel formulas [Gulwani et al. 2012], and ex-

periment design in biology [Koksal et al. 2013]. Our work builds on

constraint-based synthesis, a specific class of synthesis algorithms

that works by symbolically representing a space of candidate pro-

grams and framing the search for a correct program in this space as

a constraint satisfaction problem [Solar-Lezama 2008]. Constraint-

based methods can scale to large search spaces by leveraging the

capabilities of modern constraint-solvers and are easily extended to

cover different sets of shape primitives by simply including them in

the search space. This is in contrast to purely deductive methods

that start from a naive valid solution and apply deductive rules to

improve the program’s quality (typically measured by its length).

These methods can have a hard time finding optimal solutions with-

out the help of carefully crafted rules tailored to each primitive.

There are three main challenges in applying constraint-based

program synthesis techniques to the task of reverse engineering

CAD models. First, the most scalable constraint-based synthesis

systems work by reducing problems to boolean satisfiability (SAT),

a purely discrete problem. This is a good fit for discovering the

boolean structure of the CSG model, but CAD models also involve

continuous parameters (e.g. the positions and extents of primitive

shapes). Second, the correctness of the program to be synthesized

is naturally defined as a geometric constraint, since the 3D shape

described by the synthesized CSG program must occupy the same

volume in space as the volume contained inside the input mesh.

However, this requirement is too complex to be used as a basis

for program synthesis, so we need to translate this high-level re-

quirement into a set of constraints on the program behavior that

the synthesizer can use to efficiently prune the space of possible

programs. Third, noisy inputs (e.g. a mesh generated from a scan)

generate inconsistencies in the specification with respect to our lim-

ited primitive shapes, which could lead to contradicting constraints

that cannot be satisfied.

In this paper, we address these challenges to provide a complete

and scalable pipeline for generating a compact CSG tree from noisy

data that can be approximated at various levels. We address the issue

of a mixed continuous and discrete search problem together with

the issue of noise by breaking the search into two steps: First, we use

robust primitive detection methods based on RANSAC and graph-

cut to infer the location and orientation of the primitive shapes,

which resolves the continuous search problem in the presence of

noisy inputs. After the location and orientation of the primitives

are fixed, the remaining search problem is purely discrete, which

we solve using Sketch, a state of the art program synthesis tool

based on SAT solving [Solar-Lezama 2008]. To generate constraints

suitable for program synthesis, we take advantage of canonical

intersection terms [Shapiro and Vossler 1991]. We conduct extensive

experiments with a CAD library composed of 50models. The dataset,

CAD files, and source code are openly available with this paper.

In this work, we contribute the following:

• A formulation that decouples the continuous aspects of the

inverse CSG problem from the combinatorial ones, allowing

us to leverage mature program synthesis techniques.

• Implementation of a complete pipeline that generates CSG

trees from noisy inputs at varied approximation levels.

• Empirical evidence that our method can synthesize CSG pro-

grams for several complex models, demonstrating the effi-

ciency, scalability, and robustness of our algorithm and its

immediate application to mesh re-editing.

2 RELATED WORK
Our work draws ideas from previous work on modeling with para-

metric CAD, inverse procedural modeling, reverse engineering CAD,

program synthesis, and primitive detection.

Modeling with Parametric CAD. Parametric CAD systems allow

designers to define a geometry as the execution of a list of proce-

dures that depend on a set of parameter values [Farin et al. 2002].

This parametric representation defines and constrains the ways the

shape can be modified, allowing it to preserve the structure and

other meaningful characteristics, such as manufacturing consider-

ations. Koyama et al. [2015] use CAD to parametrize the space of

manufacturable connectors. Similarly, Shugrina et al. [2015] and
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Schulz et al. [2017] use parametric CAD models for fabrication-

oriented design optimization. These recent works argue that the

advantage of directly using CAD models over algorithms for au-

tomatic parametrization of an input 3D mesh [Bokeloh et al. 2012;

Jacobson et al. 2011; Zheng et al. 2011] include: (1) greater and more

meaningful geometric variations (as opposed to some dimensions)

and (2) automatic exposure of relational constraints that can be used

to understand function and support multiple fabrication methods.

In these works, however, the parametric models are taken as an

input and assumed to be carefully specified by expert engineers.

There has been some recent work on extracting editable 3D struc-

tures or revealing constraints from input that does not contain CAD

structure. Chen et al. [2013] allow geometric re-editing from images.

Similarly, Xu et al. [2016] propose an interactive method for extract-

ing functional information of mechanisms from multi-view images.

In both of these techniques, however, detailed user sketches are used

to extract information on the shape components and their relations.

In this work, we propose a method for automatically generating a

CSG tree from a shape without any additional user assistance. This

approach identifies the full structure and provides a plausible means

by which the geometry could have been instantiated.

Inverse Procedural Modeling. The problem of recovering the list of

geometry procedures that reconstruct a 3D shape is a special case of

inverse procedural modeling. Over the years, two primary strategies

have been developed for tackling this domain. Recognition-based

strategies attempt to discover certain attributes of the underlying

shape, such as classified geometry or segmentations [Fish et al. 2014;

Kim et al. 2013; Litman et al. 2014; Tulsiani et al. 2017; Valentin et al.

2015; Xie et al. 2014; Zhu et al. 2017] in order to estimate the in-

put’s structure. These techniques are typically based off machine

learning techniques or geometrically principled rules. While fast,

they provide limited insight of a shape’s underlying structure and

can be difficult to debug. On the other hand, search-based strategies

attempt to fully explain the input shape by sampling-based meth-

ods [Chaudhuri et al. 2011; Fan and Wonka 2016; Hämäläinen et al.

2014; Kalogerakis et al. 2012; Khungurn et al. 2015; Nishida et al.

2016; Ritchie et al. 2015; Schwarz andWonka 2014; Talton et al. 2011;

Wu et al. 2014] or direct search algorithms [Duncan et al. 2016; Fu

et al. 2015; Lau et al. 2011; Peng et al. 2016; Shao et al. 2016]. Since

search must be applied to each input geometry, these methods are

typically slower; however, the fact that they return the geometry’s

underlying structure typically makes them more informative and

robust. Our approach borrows techniques from both: we semanti-

cally segment our input geometry using recognition and then rely

on program synthesis methods which take a direct-search approach

for solving constraints.

Reverse Engineering CAD. Reverse engineering a CAD model is

a classic research problem in the CAD community. The input to

this problem is typically a shape represented as a surface mesh or a

point cloud, and the output is a solid 3D model that can be used in

CAD software for further operations. Central to this problem is the

step that converts a boundary representation (B-rep) of a mesh into

a CSG model. [Shapiro and Vossler 1991] first proposed a method

to solve the general problem of converting a b-rep into CSG models

using halfspaces, and lots of improvements have been proposed in

later work [Buchele 1999; Buchele and Crawford 2004; Buchele and

Roles 2001; Shapiro and Vossler 1993]. At a high level, this line of

research attempts to solve the problem in a deductive manner: given

a set of surface patches on the mesh, the method tries to find the

correct combination of them by applying a series of rules, e.g., if a
halfplane fully encloses the input shape then the solution can be

represented as an intersection of this halfspace and everything else

left. As a result, the quality of the solution is greatly shaped by the

set of rules one can find to apply. Our method is in sharp contrast

to previous work in that we formulate a search problem that allows

a modern program synthesizer to explore a much larger space and

solve much larger-scale examples than in previous work.

Another family of approaches to reverse engineering a model

is evolutionary algorithms. Some attempts have been made to use

genetic algorithms to optimize a CSG tree such that certain con-

straints are satisfied [Hamza and Saitou 2004; Weiss 2009]. More

recent work [Fayolle and Pasko 2016] considered the possibility of

taking a B-rep as input to the evolutionary algorithm. The output

of their method is a CSG tree that closely approximates the surface

boundary. One bottleneck of evolutionary algorithms is their long

runtime and large consumption of computational resources. Further,

their non-deterministic nature makes it hard to control and under-

stand their behavior throughout the optimization. By comparison,

although our method also searches a large space, the search is much

more directed; the constraint solver is able to take advantage of the

structure of the constraints to prune large sections of the space and

converge to a solution much faster.

There are two concurrent papers that attempt to solve the similar

problem but from different perspectives: the CSGNet paper [Sharma

et al. 2018] trains a neural network that takes as input a 2D or 3D

shape and outputs a CSG program. Compared to their work, our

method does not require a training dataset and we demonstrate our

algorithm on 3D shapes of much higher complexity. Wu et al. [2018]

reconstruct a CSG tree from raw point clouds by extracting the

primitives and inferring CSG tree structures. When building the

CSG tree, they divide the bounding box into voxels and label each

voxel as inside or outside the point cloud. A CSG tree is then built

in a bottom-up manner by solving an energy minimization problem

based on the labels of each voxel. Our work shares a similar pipeline

but does not require discretizing the inputs into voxels, which allows

us to handle inputs with details at various levels.

Program Synthesis. The field of program synthesis also has a

long history [Alur et al. 2013; Gulwani et al. 2017]. There have

been several approaches to program synthesis including constraint-

based search [Solar-Lezama et al. 2006], enumerative search [Udupa

et al. 2013], and stochastic search [Schkufza et al. 2014]. In addition,

there are program synthesis systems that are specifically targeted to

some domains. For example, Gulwani et al. [2011] use a specialized

algorithm to learn string transformation programs very efficiently.

Deductive synthesis techniques also have a long history in the

program synthesis space, including a number of recent success

stories [Delaware et al. 2015; Püschel et al. 2004]. These techniques

generally scale well because they break the synthesis problem into

small local reasoning steps. It can, however, be difficult to engineer
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the deductive rules and rule application heuristics to ensure the

system efficiently finds a good solution.

For inverse CAD, a constraint-based approach is better suited

because the enumerative search does not scale. This is due to the

large, high-dimensional search space; stochastic approaches have a

low probability of finding the correct program through sampling

techniques. Hence, in this paper, we use a constraint-based program

synthesis system called Sketch [Solar-Lezama 2008; Solar-Lezama

et al. 2006]. Sketch is a general purpose synthesis system in the

sense that it allows users to specify the grammar describing the space

of possible programs in a high-level language and automatically

generates the constraints for SAT solving.

Primitive Detection. Primitive detection is a well studied problem

and many solutions have been proposed [Attene et al. 2006; Cohen-

Steiner et al. 2004; Le and Duan 2017; Li et al. 2011; Schnabel et al.

2007; Wu Leif Kobbelt 2005; Yan et al. 2012]. In particular, Li et

al. [2011] propose a primitive detection method that aims to satisfy

CAD constraints like symmetry or perpendicularity. We do not

apply their method to our problem directly because CAD models

do not always have such assumptions. Instead, we implement our

primitive detector based on the RANSAC approach [Schnabel et al.

2007] because of its efficiency and robustness.

3 OVERVIEW
In this section, we state the inverse CSG problem and present an

overview of the method. This is a simplified version of the algo-

rithm as described in Sections 4 and 5. In Section 6, we extend

this algorithm with a segmentation procedure which allows our

method to scale to more complex geometries. Our method’s pipeline

is illustrated in Figure 2.

We test our method on a benchmark of 50 CAD models. The

dataset, CAD files, and source code are openly available with this

paper. In terms of the CAD file, We use the format defined by Open-

SCAD [OpenSCAD 2018] because it is open-source and freely avail-

able. Note that the zero-volume surfaces in some of the generated

meshes are due to the numerical instabilities of OpenSCAD. These

artifacts are not an indicator of the incorrectness of the resulting

CSG tree. As a comparison, we model the same CSG trees in com-

mercial software and get clean results (Figure 3).

3.1 Inverse CSG
Given an input surface meshM, we wish to find a program which

generates an output geometry, such that every point in space is in

its interior if and only if it is also in the interior of M. Put more

simply, this means that the interior ofM and this geometry must

occupy the same volumetric region.

In this paper, we focus on the space of CSG programs, which can

interchangeably be described as trees. The CSG grammar, as we

will describe formally in Section 4, provides a complete language

of 3D geometry, making it an expressive choice. At a high level,

the CSG grammar is comprised of discrete boolean operators and

3D geometric primitives which are described as a mix of discrete

and continuous parameters. To our knowledge, no existing search

methods can efficiently search over CSG program structure and its

discrete and continuous parameters. Thus, the key to the solution

will be reducing this mixed search problem into a purely discrete

search.

3.2 Method Overview
Our method takes a manifold surface mesh as input and performs

intelligent geometric preprocessing to transform the problem into a

compact, discrete form that existing methods in program synthesis

can solve efficiently. Below we briefly describe each step in the

pipeline (Figure 2).

Primitive Detection. First, we resolve the continuous parameters

in the search space by proposing a set of candidate primitives (Sec-

tion 4.1). This discrete set covers all primitive choices and is gen-

erated from the input surface’s geometric features and geometric

reasoning. This step fixes the values of every continuous parameter

and reduces the mixed search problem into a discrete one. This step

is also robust to noise and can deal with approximations.

Sampling. Our original problem statement is intractable as a speci-

fication for the synthesis process. Luckily, as previous work [Shapiro

and Vossler 1991] pointed out, given a finite set of primitives, one

can choose a finite subset of point constraints which renders the rest

of the constraints redundant. The method thus intelligently samples

from the entire set of point constraints, keeping only those which

add information to our search (Section 4.2). This step transforms

the infinite constraint set into a finite one.

Synthesis. Since the inverse CSG problem reduces to a compact,

semantic search over a discrete language, we apply program synthe-

sis techniques in order to efficiently solve the problem (Section 5),

feeding in the sampled points as constraints. At the end of this step,

the method is guaranteed to find a feasible CSG program whose

output matches the input mesh geometry as close as possible.

Post-processing. Finally, we further simplify the output program

using deductive rules and then re-parameterize the program for

easy end-user editing (Section 7).

4 INVERSE CSG FORMULATION
We state our problem definition as follows:

Definition 4.1. Given a mesh M, the goal is to find a simple CSG

tree such that its interior occupies the same volumetric space:

min

CSG

Complexity(CSG)

s .t . ∀p ∈ R3, Inside(CSG,p) ⇔ Inside(M,p)
(1)

Here Complexity is a discrete function that evaluates the com-

plexity of the tree. In our implementation, we limit CSG as a binary

tree and define Complexity as the number of nodes in the tree. In-

troducing Complexity biases our search towards simpler CSG trees.

The constraints check all points and ensure that each point is inside

CSG if and only if it is also insideM.

Grammar. Before we describe how to solve the problem from

Definition 4.1, we first need to specify the search space for CSG

trees. This search space is defined by the grammar shown in Figure 4.

In this grammar, each leaf node is a solid primitive, parametrized

by variables such that its shape is completely defined in the 3D
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Fig. 2. An overview of our pipeline with a 2D example. As input, our method takes in a potentially noisy surface mesh. First, we extract an over-complete set
of possible primitives in the scene (left blue box). In this example, two circles are detected, as well as four hyperplanes. In the second step of preprocessing
(center-left blue box), our method attempts to add a labeled sample in each region of the scene, as sectioned by the surface primitives. Samples inside (outside)
the input geometry are represented with a blue plus (a red minus). The samples and primitives are fed into our synthesizer (center-right blue box), which
produces a correct CSG program as output. The resulting program is post-processed (right blue box); its program structure is simplified (not shown) and
its geometric parameters are re-parameterized with metaparameters, allowing it to be interactively edited. Here, the positive and negative space circles
are detected as symmetric and metaparameterized with a single radius variable. They are then edited to make the body larger and the tail thinner, while
preserving the matching curvature.

Fig. 3. Here we show one mesh result generated by our pipeline (left). Note
that the degenerated planes in red boxes are not resolved by OpenSCAD.
We model the same CSG tree in OnShape (right), and all these zero-volume
planes are successfully removed.

space. For example, if Type is a sphere, then Parameter consists of
its center and radius. For our experiments, we consider four types

of solid primitives — spheres, cylinders, cuboids, and tori — but it is

straightforward to add more primitive types. The internal nodes in

the grammar are standard boolean operators: union, intersection,

and subtraction.

The above problem definition reveals two challenges: first, the

search space of CSG programs combines both discrete (boolean

operators and primitive selections) and continuous (primitive pa-

rameterization) variables, making the optimization problem inher-

ently challenging. Second, this problem specifies an infinite number

of constraints to satisfy, since it considers all points in 3D space.

Subsections 4.1 and 4.2 discuss our solutions to these challenges.

CSG C := L | I
Leaf L := SolidPrimitiveType (Parameter )

Internal I := Union(C1,C2) | Intersection(C1,C2) |
Subtraction(C1,C2)

Fig. 4. The CSG grammar. The leaf nodes are solid primitives with a geomet-
ric type and shape parameters. The internal nodes are boolean operators.

4.1 Detecting Primitives
We first remove the continuous variables by detecting primitives

in the mesh. However, notice that it is difficult to infer full solid

primitive parameters from the surface especially for primitives such

as cuboids. Thus, at this stage, we can only detect surface primitives
such as spherical surfaces, (infinitely large) planes, and (infinitely

long) cylindrical surfaces. Each surface primitive represents a bound-

ary f (x) = 0,x ∈ R3 and can be faithfully detected from the mesh

itself.Wewill first discuss ourmethod to detect all surface primitives,

then describe how we can extract solid primitives from them.

4.1.1 Detecting Surface Primitives. The goal of surface primitive

detection is twofold: locally, for each facet in the mesh we want

to find a surface primitive that is as close as possible; globally, the

total number of surface primitives should be kept low to avoid

oversegmentation. Our surface primitive detector is built on top

of the efficient RANSAC method [Schnabel et al. 2007] with a few

extensions to improve its robustness and flexibility. First, we run

the efficient RANSAC algorithm multiple times and collect surface

primitives at various scales. Second, we select the set of surface

primitives by running a graph-cut algorithm on a graphG = (V ,E)
defined on the surface of the mesh, where each facet is a node vi
and each pair of adjacent facets defines an edge ei j . Let { f1, f2, · · · }
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be the set of the surface primitives detected in the first step, we then

find a graph-cut in order to assign f s to each facetvi by minimizing

the following energy:

E =
∑
vi

Eunary + α
∑
ei j

Ebinary + β
∑
fi

Elabel (2)

The unary energy for each facet is defined as

Eunary (vi , f ) =
∫
x∈vi

|Dist(x, f )|dx (3)

where f is the surface primitive assigned to vi . The binary energy

on each edge is

Ebinary (ei j , fi , fj ) =
{
0, if fi = fj

1, otherwise

(4)

where fi and fj are the surface primitives assigned tovi andvj . The
label energy is defined as

Elabel (f ) =
{
0, if f is not assigned to any node

1, otherwise

(5)

The label energy can be thought of as a sparsifier on the set of

output primitives, preferring assignments where fewer primitives

are needed. This term is useful because our multiple invocations of

RANSAC can detect a large number of potential surface primitives;

the label energy term helps prune unnecessary primitives.

The user-defined scaling factors α and β allow for a tradeoff

between favoring small distances to facets and fewer numbers of

surface primitives. Combining efficient RANSAC and graph-cut

algorithm results in a surface primitive detector that is both robust

to noises and flexible to approximate the mesh at various level.

4.1.2 Adding Auxiliary Planes. The above algorithm can detect

all visible surface primitives. In order to reconstruct solid primitives,

we also need to infer hidden surfaces. For example, if one face of a

cuboid is hidden inside another solid primitive, it will be impossible

to exactly determine the cuboid’s dimensions. We use the method

in [Shapiro and Vossler 1991, 1993] to add auxiliary planes. Specif-

ically, we use the point samples to be described shortly to detect

whether a new auxiliary plane is needed, and choose to add planes

that are at certain anchor points (e.g., the center of a sphere) and
parallel to the detected surface primitives.

4.1.3 Building Solid Primitives. We construct solid primitives

once all surface primitives are collected. Building the solid prim-

itives can itself be formulated as a discrete search problem: We

first locally solidify surface primitives by replacing f (x) = 0 with

f (x) ≥ 0,x ∈ R3, and then we build a solid primitive by intersect-

ing the individually solidified surface primitives. For example, a

cuboid can be built by searching for three pairs of parallel planes

orthogonal to each other and intersecting either themselves or their

complements, depending on their signs. Although this solid primi-

tive construction adds one more layer of search below the leaf node

in the grammar, the search space is now purely discrete: all contin-

uous parameters have been determined at this point and encoded

in as a discrete search.

4.2 Reducing the Number of Constraints
Now that we have reduced the search space to a discrete one, the

next step is to handle the infinite number of point constraints. Pre-

vious work [Shapiro and Vossler 1991, 1993] has laid the theoretical

foundation for tackling this problem, which we briefly state below:

Definition 4.2 (Canonical intersection term). Let { f1, · · · , fn } be
the set of all surface primitives. A canonical intersection term C is

defined asC = ∩ni=1Fi where Fi is either {x| fi (x) > 0} or {x| fi (x) <
0}.

In other words, a canonical intersection term is an intersection

of halfspaces induced by each surface primitive. Based on the above

definition, [Shapiro and Vossler 1991] proposed the following de-

scribability theorem:

Definition 4.3. An input mesh is describable by surface primitives

{ f1, · · · , fn } if there exists a CSG tree whose leaves are fi s and it

occupies the same volumetric region as the interior of the mesh.

Theorem 4.4. An input mesh is describable by surface primitives
{ f1, · · · , fn } if and only if every canonical intersection term has the
same classification with respect to the mesh.

The theorem is based on the fact that each canonical intersection

term is either fully included or excluded in the CSG tree, so the input

mesh can be accurately reconstructed if and only if each canonical

intersection term is fully inside or outside the mesh. As a result,

instead of checking every point p ∈ R3, it is sufficient to check only

one representative point from each canonical intersection term.

4.2.1 Sampling-based Method. Although [Shapiro and Vossler

1991] established the theoretical foundation, it assumes all the canon-

ical intersection terms are given beforehand. In practice, however, as

the number of canonical intersection terms grows combinatorially,

enumerating all canonical intersection terms quickly becomes in-

tractable. This motivates us to use a sampling-based method to find a

representative from approximately all canonical intersection terms:

we uniformly sample points inside the bounding box of the input

mesh, then keep only one representative sample in each canonical

intersection term. Then, we divide all resulting representatives into

two sets, P+ and P−, based on whether they are inside our outside

the input mesh, respectively.

4.2.2 Handling Imperfect Input. Sometimes the input mesh can-

not be precisely reconstructed because there are missing surface

primitives, or because the mesh is noisy or imperfect. This causes

ambiguity when we assign labels (positive or negative) to represen-

tatives because both positive and negative samples can occur in a

single canonical intersection term. In this case, we assign the label

based on the majority of samples in that canonical intersection term.

This is equivalent to finding a CSG tree such that the volumetric

difference between it and the input mesh is minimized.

This step concludes the preprocessing step and leaves us with a

more tractable problem with a finite number of constraints:
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ALGORITHM 1: A naïve algorithm for finding a feasible solution

Input: Surface Primitives fi (x ) = 0; P+; P−
.

Output: A CSG tree that satisfies all constraints in Problem 4.5.

CSG = ∅;
for each p ∈ P+ do

Cp = R3;

for each fi do
if fi (p) > 0 then

Cp = Cp ∩ {fi (p) > 0};
else

Cp = Cp ∩ {fi (p) < 0};
end

end
CSG = CSG ∪ Cp ;

end
return CSG;

Definition 4.5. Problem (1) can be equivalently redefined as the

following discrete problem:

min

CSG

Complexity(CSG)

s .t . PrimitiveSet(CSG) = {Detected Primitives}
∀p ∈ P+, Inside(CSG,p) = True
∀p ∈ P−, Inside(CSG,p) = False

(6)

4.3 A Naïve Algorithm
Algorithm 1 describes a naïve algorithm that produces a feasible
CSG solution to the problem in Definition 4.5 that satisfies all the

constraints but does not attempt to minimize its complexity.

Intuitively, Algorithm 1 outputs a long program that generates a

flattened CSG tree by merging many small 3D pieces. To get a rough

idea of how large the resulting CSG tree could be in the worst case,

recall that an arrangement of n general planes partitions the space

into O(n3) nonempty canonical intersection terms, which grows

quickly to tens of thousands of regions when we increase n to a

number even as small as 30. Even if only one percent of them are

occupied by the input mesh, this still leaves hundreds of subtrees for

Algorithm 1 to merge. As a result, this algorithm returns a concise

CSG program in practice only if |P+ | is very small.

5 ALGORITHM USING PROGRAM SYNTHESIS
Algorithm 1 provides a valid solution to the problem defined in

Definition 4.5. However, the resulting CSG program is far from com-

pact. It might be possible to simplify this CSG program to some

extent using set theory rules, but piecing together all the small re-

gions in the solution produced by Algorithm 1 is inherently a hard

task. In this section, we describe an algorithm that uses program

synthesis to directly search for a simple program that satisfies the

constraints in Definition 4.5. Since even small-sized programs can

induce a significantly large search space, for the algorithm described

in this section, we assume that the desired CSG program is small in

size. In the next section, we rectify this scalability issue by provid-

ing a divide-and-conquer algorithm which operates atop program

synthesis.

Program Synthesis. In program synthesis, one defines a space of

programs and attempts to search within the space for a program that

meets an input specification. For this algorithm, we define the search

space as all CSG trees that have at most k = 32 nodes within the

grammar specified in Section 4. We define the specification that the

positive (negative) representative points P+ (P−) lie in the interior

(exterior) of the CSG program generated mesh. Specifically, among

all CSG trees that have no more than k nodes, the synthesizer must

find the smallest one that can satisfy the point constraints on P+

and P−. As one can see, if there exists a tree of size k that satisfies

all the point constraints, the synthesizer, in theory, should be able to

find it within the search space. The success of a synthesizer hinges

on its ability to quickly search through the colossal search space

to find a satisfying solution. To give an example of how big this

search space is, given a choice of 10 solid primitives and depth 5, the

total number of valid CSG trees is 4.3 × 10
25
, making any explicit

enumeration of the search space infeasible. In our work, we rely

on Sketch [Solar-Lezama et al. 2006], a state-of-the-art program

synthesis system that uses constraint-based reasoning using SAT

solvers to efficiently search through this space. Sketch gives you the

choice of searching for the globally optimal solution or performing

only best-effort optimization. In our experiments, we run with best-

effort optimization because it is faster and works well in practice.

Counter-Example Guided Inductive Synthesis. One of the key algo-

rithmic components which allows Sketch to scale is the Counter-

Example Guided Inductive Synthesis (CEGIS) algorithm. The insight

is that while all constraints need to be satisfied for a program to be

correct, not all constraints need to be considered by the synthesizer

to produce the correct program: Imagine we’re synthesizing a linear

function y =mx +b, there can be thousands of point constraints on

the line, but only 2 distinct points are needed. CEGIS employs two

sub-routines, a synthesizer and a checker: The synthesizer solves

the search problem on a subset of constraints, producing a candidate

program. The checker takes the candidate program and, if possible,

produces a counter-example — that is, a constraint that invalidates

the candidate program. This counter-example is added to the subset

of constraints, prompting the synthesizer to find a better candidate

program. CEGIS terminates successfully when the checker fails to

produce a counter-example and terminates unsuccessfully when

the synthesizer fails to produce a candidate program. By iteratively

adding counter-examples to the subset, CEGIS limits the number of

constraints that need to be considered by the synthesizer, making

synthesis scalable.

Our Algorithm. We now have enough information to describe

Algorithm 2, which is built on top of Sketch and CEGIS. The algo-

rithm is designed to solve small-scale problems under the assump-

tion that the desired program is in the space of programs given

to Sketch. The algorithm returns a simple CSG tree satisfying all

point constraints.

Theorem 5.1. Algorithm 2 finds a feasible solution in finite time if
the desired program is in the search space given to the synthesizer.

The proof can be found in Appendix A.
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ALGORITHM 2: An algorithm for small-scale problems.

Input: Surface Primitives fi (x ) = 0; P+; P−
.

Output: A CSG tree that satisfies all constraints in Definition 4.5.

Q+ = Pick a subset of P+;
Q− = Pick a subset of P−

;

CSG = ∅;
do

CSG = The result from calling a synthesizer to satisfy Q+ and Q−
;

Diff = ∅;
for each p ∈ P+ do

if not Inside(CSG, p) then
Diff = Diff ∪ {p };

end
end
for each p ∈ P− do

if Inside(CSG, p) then
Diff = Diff ∪ {p };

end
end
Pick a subset of points in Diff and add them to Q+ and Q−

accordingly;

while Diff , ∅;
return CSG;

6 ALGORITHM FOR LARGE-SCALE PROBLEMS
We now describe how to scale the algorithm in Section 5 to large

problems. The key insight is to split the set of point constraints from

Definition 4.5 so that the synthesizer will only have to discover the

program for a small portion of the actual mesh. In an extreme case,

if we give only one positive point constraint to satisfy, then we can

always switch to Algorithm 1 to ensure success. Formally, the idea

is stated by Theorem 6.1:

Theorem 6.1. Let P+
1
, P+

2
, · · · , P+m be a partition of P+ in Defini-

tion 4.5. Let Ti be the solution to the following problem:

min

Ti
Complexity(Ti )

s .t . PrimitiveSet(Ti ) = {Detected Primitives}
∀p ∈ P+i , Inside(Ti ,p) = True
∀p ∈ P−, Inside(Ti ,p) = False

(7)

Then ∪Ti is a feasible solution to Definition 4.5.

The proof can be found in Appendix A.

While Theorem 6.1 does not specify a partition method, in prac-

tice semantically meaningful partitions like mesh segmentation or

point cloud segmentation techniques produce simpler and more

semantically meaningful programs than arbitrary partitions. This is

intuitive as geometrically similar points usually have a better chance

of being from the same CSG subtree. In our experiments, we tested

surface mesh segmentation, spectral clustering, and hierarchical

agglomerative clustering (HAC). We have found that HAC provides

the best trade-off of algorithmic simplicity and desirable results.

Algorithm 3 shows our final algorithm based on Theorem 6.1.

It recursively calls Algorithm 2 on the different partitions; if the

synthesizer fails on any partition, then the positive constraints are

split and the algorithm is run again. For the base case when |P+i | = 1,

ALGORITHM 3: Final algorithm to solve large-scale problems.

Input: Surface Primitives fi (x ) = 0; P+; P−
.

Output: A CSG tree that satisfies all constraints in Definition 4.5.

if |P+ | = 1 then
return CSG from Algorithm 1;

end
Compute (CSG, succeed ) using Algorithm 2;

if succeed then
return CSG;

else
CSG = ∅;
Partition P+ into P+

1
, P+

2
, · · · , P+m ;

for each P+i do
Ti = Recursively call Algorithm 3 with P+i and P−

;

CSG = CSG ∪ Ti ;
end
return CSG;

end

the algorithm reverts back to Algorithm 1, which is guaranteed to

produce a solution for that partition. However, reaching the base

case is very rare (it never happened in our experiments) since the

search space that the synthesizer can handle is typically much bigger

than the size of a single partition.

Theorem 6.2. Algorithm 3 is guaranteed to produce a feasible
solution to the problem in Definition 4.5 in finite time.

The proof can be found in Appendix A.

7 POST-PROCESSING
The post-processing procedure has two stages. First, our method

attempts to further simplify the CSG tree returned by Algorithm 3.

Second, symmetric patterns are detected and reparameterized for

end-user re-editing. We describe each of these processes in turn.

7.1 Simplification
Following Algorithm 3, we begin a procedure to simplify its output.

Since the output is a union of the outputs produced by the program

synthesis system for the different segments, there might be some

unnecessary redundancies across the segments. We eliminate these

redundancies by applying a set of equivalence rules to simplify the

output CSG tree.

This simplification consists of three steps. In the first step, all

extremely similar pairs of solid primitives are identified. Two solid

primitives are considered similar if their types are the same and

their positions, orientations, and parameterizations are all close in

Euclidean distance. These similar solid primitives are replaced with

a single common solid primitive.

In the second step, all intersections and unions are flattened

with respective nested operations, and redundant expressions are

eliminated. For example, (A∪B)∪Awould be flattened to (A∪B∪A),
and the redundant∪Awould be eliminated, yieldingA∪B. The same

would be true if all of the unions were changed to intersections.

However, expressions with mixtures of operators, such as (A∪B)∩A
would not be simplified in any way in this step.
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In the third and final step, our algorithm recursively attempts to

simplify nested expressions. During each simplification, all combi-

nations of all sub-expressions are compared, and a set of prescribed

simplification rules are greedily applied. If a pair of subexpressions

is simplified at a certain depth in the expression tree, the entire

tree is re-simplified from that node downward, in order to take

advantage of potentially newly exposed simplifications.

7.2 Symmetry-Based Re-editing
While the resulting CSG tree is useful in that it can be directly edited,

each component of the tree is independent. Parameterizations are

isolated to each individual solid primitive. In order to facilitate

easy user exploration and editing of the resulting CSG tree, we re-

parameterize some of the solid primitives of the resulting CSG tree

in order to take advantage of potential symmetries. In particular,

we loop over each pair of solid primitives of the same type in our

CSG tree and compare their volumetric parameterizations. For each

pair, we compare sphere radii, cylinder radii, cylinder heights, and

cuboid bounding box extent triplets (disregarding order). If any of

these four quantities match, we consider the solid primitive pair to

be symmetric in that parameter (or parameter set, in the case of the

cuboid), and reparameterize themwith a meta-parameter. This meta-

parameterization allows all detected symmetric solid primitives to

be edited simultaneously by changing a single value, preserving the

detected symmetry.

8 RESULTS
In this section, we first present a new dataset for benchmarking the

performances of different reverse engineering methods. We then

compare our algorithm to two baselines and report their perfor-

mances on our dataset. For almost every model in the dataset, our

method manages to find a much more compact CSG tree compared

to the baseline approaches and reconstruct all examples with < 7%

relative error (Figure 8). Next, we demonstrate the robustness of our

method by testing it on imperfect meshes. Finally, we discuss the

effectiveness of our simplification step and present mesh re-editing

examples.

8.1 Benchmark
Although reverse engineering a surface mesh to a CSG tree is a

long-studied problem, not a lot of effort has been made to build

a test set for evaluating different algorithms. The lack of a high-

quality dataset makes it more difficult to fairly compare between

different methods. In this work, we attempt to close this gap by

presenting a dataset that consists of 50 clean surface meshes of

various complexity. These meshes are collected from examples in

the previous work [Buchele and Crawford 2004; Fayolle and Pasko

2016] and online CAD libraries [GrabCAD 2018; Thingiverse 2018;

Zhou and Jacobson 2016], including objects such as brackets, gears,

and knot structures. The simplest of these surface meshes can be

constructed by fewer than 10 surface primitives while the most

complex model requires over 100 surface primitives. We ask readers

to refer to Figure 5, 6, and 7 for more details.

We use this benchmark set to evaluate our algorithm and two

baselines [Buchele and Crawford 2004; Fayolle and Pasko 2016].

Fig. 5. Here we show five examples from the benchmark and our solutions.
Left: input meshes. Middle: output meshes reconstructed from our CSG
solutions. Right: intermediate CSG results for visualization purposes. We
visualize the CSG trees by doing a post-order tree traversal. For these five
examples, the complete visualization can be found in our video.

Each method takes as input a mesh from the dataset and outputs

the best CSG tree it can find. We evaluate methods on three metrics:

the complexity of the tree (the number of nodes), the volumetric

difference between the mesh and the tree, and the runtime.

8.2 Comparison to Deductive Methods
Since Theorem 4.4was proposed in [Shapiro andVossler 1991], many

follow-up methods have been proposed [Buchele 1999; Buchele

and Crawford 2004; Buchele and Roles 2001; Shapiro 2001; Shapiro

and Vossler 1993] to try to solve both 2D and 3D meshes. At a

high level, this line of research attempts to solve the problem in a

deductive manner: knowing the sign of each canonical intersection

ACM Transactions on Graphics, Vol. 37, No. 6, Article 213. Publication date: November 2018.



213:10 • Du, T. et al

Fig. 6. Eight representative examples out of the 50 models in our benchmark.
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Fig. 7. Our benchmark provides meshes of various complexity (number of surface primitives). This chart shows the number of surface primitives in each mesh
in an increasing complexity order.

term, a union of all the positive canonical intersection terms is

considered as an initial (valid) solution. Then, a set of equivalence

rules are iteratively applied to simplify this solution. In this section,

we implemented the BHC algorithm in [Buchele and Crawford 2004]

and evaluate its performance on our benchmark. The output is a

binary CSG tree saved in an OpenSCAD file and no post-processing

was applied. The results are compared to ours and discussed below.

Tree Complexity. We evaluate the tree complexity in terms of

the number of nodes (Figure 9). For almost every example, our

method generates significantly more concise solutions, and the

trend becomes more obvious as the problem size scales up. This is

because our synthesizer gives the performance boost in generating

a smaller number of leaf and internal nodes.

Volumetric Difference. Since both methods are built on top of

Theorem 4.4, the results are guaranteed to have small volumetric

difference (Figure 8). The standard Hausdorff distance is also eval-

uated and provided along with the volumetric error. The relative

errors shown in these examples are mostly due to the difference

between perfect curved surfaces and the tessellation in the input

meshes (Figure 11).

Runtime. Figure 10 shows the runtime of our algorithm for each

example in the benchmark. Runtime less than 2 minutes is not dis-

played in Figure 10 due to the axis range. The most time-consuming
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Fig. 8. The relative reconstruction error using our method. Blue: the relative volumetric error, computed by dividing the volumetric difference by the volume of
the input mesh. Orange: the relative Hausdorff distance, computed by the Hausdorff distance divided by the size of the bounding box of the input mesh.
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Fig. 10. Time spent on each example in the data set by our method. Missing columns mean the examples were solved in less than 2 minutes.

example was finished in 330.3 minutes, and the average runtime

across the whole benchmark is 38.3 minutes. The time reported in

Figure 10 was measured by running our algorithm in the sequen-

tial mode in order to make a fair comparison to other baselines. In

practice, one can parallelize the algorithm in Section 6 because after

segmentation, solving each part is completely independent of each

other.

Compared to our method, the BHC algorithm has an expected

O(n3) running time where n is the number of surface primitives. For

our benchmark where most examples have n < 100, we observed

the BHC algorithm finished typically in less than a few minutes.

Although BHC is a faster algorithm, our method generates much

more compact solutions, making it arguably the better choice when

the runtime is not a bottleneck.
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8.3 Comparison to Genetic Algorithm

Fig. 11. Here we show example 67, the one with the largest volumetric error
in Figure 8. Left: the input mesh which triangulates the spherical surface
using 24×12 squares. Right: our synthesizer recognizes the underlying sphere
and exports it as a high-resolution mesh, causing the large volumetric
difference shown in Figure 8 (6.5%, column 2).

We also compared our algorithm to a genetic algorithmic ap-

proach presented in [Fayolle and Pasko 2016]. We ran this algorithm

on our benchmark using the parameters as they reported them —

50, 000 sample points and a population size of 150.

We compared our algorithm to the genetic algorithm on four

different meshes, running on a Xeon E5-1620 3.5 GHz processor.

Solving for the CSG of these meshes scaled exceptionally poorly in

the number of candidate primitives. Examples 101, 128, and 145 had

19, 42, and 32 surface primitives respectively, and each required at

least 2 hours per iteration. Given that they each required over 100

iterations, we terminated the optimization after 200 hours without

completion. By comparison, our algorithm was able to solve these

problems in 1.6, 15.2, and 4.6 minutes.

We were able to run one example to completion using the genetic

algorithm. The genetic algorithm ran on example 96, with 12 solid

primitives in approximately 2 hours, and ultimately terminated

with 14% error. Figure 12 shows the energy of the elite CSG tree

versus the generation. The genetic algorithm’smost computationally

expensive step — the energy function evaluation— is embarrassingly

parallelizable, and speedups scale linearly with the number of CPU

cores available up to the population size. Ideally, when we use 150

cores, this approach can be sped up to a runtime 8 minutes and

56 seconds. However, we note that most CPUs have no more than

8 cores (parallelizing on 8 cores would require more than 4 hours

for this example), leaving such parallelization infeasible outside of

cloud applications. By comparison, our algorithm was able to solve

example 96 in only 50 seconds on a single thread — faster than any

parallelization of the genetic algorithm, while using significantly

fewer resources, and producing only 0.0023% error. For reference,

we show the evolution of the genetic algorithm’s elite candidate

CSG tree energy function and volumetric error in Figure 13.

To further demonstrate the scalability of our algorithm versus

the genetic algorithm, we ran the genetic algorithm on a CSG tree

comprised of a single leaf cuboid and provided 6 candidate primitives.

Single-threaded, the genetic algorithm was able to find the optimal

solution in 1 hour 4 mins (and 103 generations). Given 150 cores, this
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Fig. 12. The energy as defined by [Fayolle and Pasko 2016] of the elite CSG
tree in the genetic algorithm’s population, vs. generation. While the energy
improves rapidly at the beginning, it is unable to resolve all discrepancies
between the input and generated mesh after 672 iterations.
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Fig. 13. The relative volumetric error of the elite CSG tree in the genetic
algorithm’s population, vs. generation. The energy in [Fayolle and Pasko
2016] is purely defined on the surface difference so it fails to capture the vol-
umetric change. Thus, while energy monotonically increases, the volumetric
error oscillates between generations.

Fig. 14. The input mesh (left) and the mesh produced by the best CSG tree
after termination of the genetic algorithm (right). Note that the genetic
algorithm’s output still has a few points of notable volumetric difference,
particularly containing extra segments at the top-left-back and bottom.
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could be solved in around 40 seconds. By comparison, our algorithm

solves the problem single-threaded in less than 5 seconds. We note

that our algorithm, when running, considers 216 solid primitives

and is still around 800 times faster. If the genetic algorithm was

fed 15 candidate primitives, iterations took longer than an hour

apiece and was not run to completion. To give a stronger sense as

to the comparative robustness between algorithms with respect to

unnecessary candidate primitives, our algorithm solved example 96

having been given 216133 candidate solid primitives.

8.4 Robustness
Most examples in our benchmark were surface meshes exported

from CAD software. As a result, we know in advance there exists

at least one CSG program that can perfectly represent the input

mesh. In this section, we demonstrate the robustness of our algo-

rithm by pushing it to solve noisy meshes that cannot be precisely

described by our CSG grammar. Moreover, to show in our pipeline

the synthesizer is resilient to changes in primitive detection results,

we send the synthesizer various number of surface primitives and

evaluate its output. In both cases, our pipeline is able to find an

approximation of the input mesh at various levels.

8.4.1 Handling General Mesh Inputs. Here we provide three ex-
amples to show our algorithm is robust to handle input meshes

beyond the capability of our CSG grammar. The Fandisk example

(Figure 15) contains general quadratic surfaces not yet supported

by our grammar, and our pipeline found a good approximation of

Fandisk using spheres, planes, and cylinders only.

In the next two examples, we alternate the inputs by adding

noises (Figure 16) or remeshing (Figure 17). The results show that

our pipeline can tolerate a certain amount of changes in the inputs

while still generating solutions that capture the underlying structure.

This is mostly because of the robustness of our primitive detector.

Fig. 15. Our pipeline can approximate meshes made from primitives not
included in the grammar. Left: the Fandisk example that contains quadratic
surfaces; Right: the output of our method that approximates the input mesh.

8.4.2 Varying Surface Primitive Number. Another question we

ask is how robust our synthesizer is if the primitive detector fails

to deliver the right set of surface primitives. As explained in Sec-

tion 4, the synthesizer will attempt to use the given primitives to

approximate the mesh as closely as possible. Figure 18 demonstrates

this in example 39, which has 57 surface primitives in total. Here

Fig. 16. Solving input meshes with different amount of noises. Top row from
left to right: 0%, 1%, and 2% noises are added. Bottom row: our solutions.

Fig. 17. Solving remeshedmodels. Top row: input meshes that use a different
number of slices to approximate curved surfaces. Bottom row: our solutions.

we vary the threshold in our graph-cut algorithm to generate 10,

20, 40, and eventually 57 surface primitives and send them to the

synthesizer. As the number of primitives increases, the volumetric

difference becomes smaller and the synthesizer gradually converges

to the input mesh. As shown in the figure, even with limited prim-

itives, the synthesizer still does reasonably well in finding a good

approximation of the mesh.

8.5 Post-processing
8.5.1 Program Simplification. We applied our simplification pro-

cedure to all of our output CSG solutions (Figure 19). In general, we

found that our method was able to reduce the number of tree nodes

by 16% on average. This reduction was in part due to flattening

binary expressions of the same type and in part due to recogniz-

ing duplicated subtrees between segments. Since our simplification

algorithm does not reason about geometry, it cannot, e.g., merge

adjacent cuboids, or remove shapes which have no impact on the
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Fig. 18. Using a various number of primitives to approximate example 39.
Left in the red box: the original mesh. Right: results from our pipeline using
10, 20, 40, and 57 surface primitives. As the number of primitives increases,
the result converges to the input mesh.

output geometry. We leave such extensions to our method for future

work.

8.5.2 Mesh Re-editing. We present an example of changing CSG

parameters using our symmetry-based re-parameterization in Fig-

ure 20. We found that our method is good at detecting and meta-

parameterizing most symmetries. However, symmetries may be

missed in two cases. First, if two geometries are very similar but

differ beyond the user-chosen threshold distance, they will not be de-

tected as symmetric. This is an inevitable drawback of thresholding.

Second, although two geometries in a design might be symmetric,

the detected CSG might not be symmetric due to occlusion. For

example, one primitive in a symmetric pair may be longer than

the other if it protrudes into, and is completely covered by, other

existing geometry in the part. This phenomenon can create both

false positives and false negatives. In example 160, some symmetries

of the base frame were missed for this latter reason. Frame pieces on

one side are longer than the other, although visually they look the

same since the extra length contributes to a corner which is already

covered by an adjacent cuboid primitive. In either of these cases

the geometry, though symmetric, will not be meta-parameterized

as such.

9 DISCUSSION
Reverse engineering a CAD model is a classic and fundamental

problem. Despite its long history, solving it in a general 3D setting

is still considered to be very difficult due to its huge search space. By

combining geometric processing methods and program synthesis

techniques, we have presented a pipeline that pushes the problem

of reverse engineering a CAD model to a larger scale that has not

been seen in any previous work. This scalability improvement is

mostly because of our effort to reformulating the original problem

as a discrete search task that modern program synthesizers excel in,

and understanding how far we can push a program synthesizer to

solve this classic problem remains an exciting direction to explore.

As pointed out before, our pipeline is also robust to imperfect

inputs, including meshes not describable by our grammar or missing

surface primitives. This is in part due to the primitive detector

being resilient to noise, and in part due to preprocessing samples in

each canonical intersection term to avoid potential conflicts in the

synthesizer beforehand. Alternatively, we can choose to increase

the expressiveness of our grammar by including more primitive

types, e.g., quadratic or even B-spline surfaces, which opens up the

possibility of accurately reconstructing a free-form geometry.

One limitation of our work is that our results are greatly shaped by

the segmentation method used in our algorithm. Good segmentation

generally leads to compact solutions and short programs, whereas

bad segmentation may result in broken pieces and overcomplicated

solutions. In our algorithm design, we intentionally avoid relying

on a specific segmentation method in exchange for generality so

that different segmentation methods can be modularly swapped.

It is natural to extend our pipeline to combine mesh and point

cloud-based segmentations, which we leave for future work.

Finally, the CSG grammar discussed in this paper is limited to

basic CSG operations. In the future, it would be interesting to explore

the possibility of integrating higher-level programming language

concepts like for loops, if-else statements, or even recursive calls

into the pipeline. Interestingly, it turns out we can build strong

connections between these concepts and classic geometry problems.

For example, synthesizing a for loop in a CSG program can be linked

to detecting symmetric or repeated patterns on the mesh. As a result,

we believe combining these two active research fields will open up

new possibilities and inspire more exciting research work to come

in the future.

10 CONCLUSION
We have presented a novel method which infers CSG programs that

reconstruct an input triangle mesh. We built a dataset of 50 CAD

models of varying complexity, where the most complex one has over

100 surface primitives. The dataset has more examples, and more

complex examples, than previous work. By intelligently converting

a mixed, over-constrained search problem into a discrete, compact

form, we presented a parallelizable search algorithm that solved

examples in the dataset. Further, we demonstrated the robustness of

our algorithm by solving examples not describable by our grammar.

Finally, since our method returns parameterized CSG programs, it

provides a powerful means for end-users to edit and understand the

structure of 3D meshes.

By decoupling primitive detection and search, we have created a

general and flexible framework. By formulating our problem in the

context of programming languages, we have been able to employ

state-of-the-art program synthesis techniques, which can quickly

produce high-quality, compact results. In the future, we hope to

extend our method to more complex classes of geometry, such as

spline surfaces. We also hope to introduce higher level programming

concepts to the pipeline and further explore the connections be-

tween program synthesis, geometry processing, and computer-aided

design. We look forward to seeing how the community can apply

our proposed techniques to more complex, real-world problems.

A THEOREMS AND PROOFS
Proof of Theorem 5.1. To show the algorithm terminates in finite

time, note that |Q+ |+ |Q− | increases by at least one at each iteration.
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Fig. 19. The number of tree nodes in our solutions before and after applying the simplification step in Section 8.5.

Fig. 20. Symmetry-based re-editing results in example 160. The leftmost
figure shows the output shape from our algorithm, then three sequential
editing operations are applied, highlighted in red boxes.

Since |Q+ | ≤ |P+ | and |Q− | ≤ |P− |, the loop runs at most |P+ |+ |P− |
times. Upon termination, the Diff set is empty, meaning that CSG

satisfies all points in P+ and P− and therefore it is a feasible solution

to Problem 4.5.

Proof of Theorem 6.1. By definition, CSG uses only detected prim-

itives. To see points in P+ are inside CSG, pick any p ∈ P+. Since
{P+i } is a partition of P+, p must come from some P+i . Thus p ∈ Ti ⊂
CSG. To see that all points in P− are excluded, assume there is

one counter-example p ∈ P− but p ∈ CSG. Therefore, there ex-

ists i such that p ∈ Ti , which contradicts to the fact that ∀p ∈
P−, Inside(Ti ,p) = False .

Proof of Theorem 6.2. To show the recursion terminates in finite

time, just note that |P+ | strictly decreases in each recursive call. To

show the guarantee, notice that Algorithm 1 never fails and when-

ever Algorithm 2 fails it is reduced to Algorithm 1 eventually. The

fact that the solution is feasible comes directly from the correctness

of Algorithm 1, Algorithm 2, and Theorem 6.1.
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