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Abstract—A wide adoption of 3D videos is hindered by the
lack of high-quality 3D content. One promising solution to
this problem is through data-driven 2D-to-3D video conversion.
Such approaches are based on learning depth maps from a
large dataset of 2D+Depth images. However, current conversion
methods, while general, produce low-quality results with artifacts
that are not acceptable to many viewers. We propose a novel,
data-driven, method for 2D-to-3D video conversion. Our method
transfers the depth gradients from a large database of 2D+Depth
images. Capturing 2D+Depth databases, however, are complex
and costly especially for outdoors sports games. We address this
problem by creating a synthetic database from computer games
and showing that this synthetic database can effectively be used
to convert real videos. We propose a spatio-temporal method to
ensure the smoothness of the generated depth within individual
frames and across successive frames. In addition, we present
an object boundary detection method customized for 2D-to-3D
conversion systems, which produces clear depth boundaries for
players. We implement our method and validate it by conducting
user-studies that evaluate depth perception and visual comfort of
the converted 3D videos. We show that our method produces high-
quality 3D videos that are almost indistinguishable from videos
shot by stereo cameras. In addition, our method significantly
outperforms the current state-of-the-art method. For example,
up to 20% improvement in the perceived depth is achieved by
our method, which translates to improving the mean opinion
score from Good to Excellent.

Index Terms—2D-to-3D conversion, Depth estimation, 3D video

I. INTRODUCTION

Stereoscopic 3D (S3D) videos offer more engaging experi-

ence to viewers than traditional 2D videos, especially for sports

games. Shooting sports games in 3D, however, is complex and

costly, because it requires deploying and operating expensive

3D camera rigs. A more cost-effective approach is to convert

regular 2D videos to 3D using automated methods. The 2D-to-

3D conversion methods can also be used to convert previous

events of historical importance, e.g., the previous FIFA World

Cup final game. Converting 2D sports videos to high-quality

3D is, however, challenging, because of the high motion and

complexity of the scenes in sports games. Current 2D-to-3D

conversion methods, e.g., [32], [40], are designed for general

videos and when applied to sports videos may introduce various

visual artifacts that negatively impact the viewing experience

of users.

In this paper, we propose a data-driven method for converting

soccer 2D videos to 3D. The proposed method handles the

temporal and spatial complexities of soccer videos. Unlike

several previous methods, e.g., [23], [20], the proposed method

is designed and optimized for sports videos and especially

soccer videos. The key idea of the proposed method is to learn

the depth information of a video frame from similar frames in a

database of 2D+Depth soccer images. However, such databases

are very costly to create, especially for outdoors sports games

where depth information is harder to capture compared to

indoor environments where simpler equipment (e.g., Microsoft

Kinect) can be used to capture depth. In addition, sports

games may contain numerous varieties of scenes and frame

compositions, which requires large and diverse databases to

cover. We address this problem by creating a synthetic database

from computer games and showing that this synthetic database

can effectively be used to convert real videos. Current computer

games provide high-quality depth maps, which allows us to

cost-effectively obtain a wide variety of shots from different

teams, stadiums, seasons and camera angles.

The proposed method converts individual frames by dividing

each into blocks and finding similar blocks in the database.

It then transfers the depth gradient from the matched blocks.

This, however, may not produce smooth depth within the frame

and across successive frames. We present a spatio-temporal

depth reconstruction method to address this problem.

We conduct extensive user studies to evaluate the perfor-

mance of the proposed 2D-to-3D conversion method. In these

studies, we use a diverse set of video segments and follow the

ITU BT.2021 recommendations [6]. Our results show that: (i)

3D videos produced by our method are almost indistinguishable

from original videos shot in 3D, (ii) our converted videos are

rated Excellent by subjects, most of the time, and (iii) our

method significantly outperforms the state-of-the-art method

in the literature [20].

A preliminary conference version of this work appeared

in [11]. The current paper extends [11] along two important

aspects. First, it introduces a temporal smoothness method

to control depth variations in successive frames. Second, it

presents a detailed design for an object segmentation method

tailored for 2D-to-3D video conversion. This method produces

cleaner depth boundaries for players.

The rest of this paper is organized as follows. Section II

summarizes the related works in the literature. Section III

provides an overview of the proposed method. Section IV

presents the proposed depth gradient based conversion method

and Section V presents the object segmentation method.

Section VI describes our subjective and objective evaluation,

and Section VII concludes the paper.
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II. RELATED WORK

Over the last few years, applications for 3D media have

extended far beyond cinema and have become a significant

interest to many researchers. Calagari et al. [12] propose a

3D streaming system that performs depth customization for a

wide variety of 3D displays. Yang et al. [38] use the client

viewing angle in a tele-immersive environment to prioritize

the streaming of 3D content. Hefeeda et al. [16] provide

content protection for 3D media. While such systems provide

useful applications, the limited 3D content still remains a main

bottleneck for the adoption of 3D technology. To tackle this

issue, 2D-to-3D conversion techniques can be used. 2D-to-3D

conversion has been explored by many researchers. However,

previous methods are either semi-automatic [34], [41], [14],

[26] or cannot handle complex motions [32], [21], [36], [23],

[17], [20], [7], [40]. To the best of our knowledge, there has

not been a 2D-to-3D conversion technique that is capable

of handling the complex motions and the variety of scene

structures that exist in soccer videos.

In 2D-to-3D conversion, the depth map of an image is

estimated. Stereo image pairs can then be synthesised using

this depth information. Traditional computer vision approaches

such as depth from defocus or structure from motion can be

used to compute the depth maps. Park et al. [32] estimate

the depth using structure from motion. Zhang et al. [41], [40]

propose a 2D-to-3D conversion system based on multiple depth

cues including motion and defocus. A survey on automatic

2D-to-3D conversion techniques and depth cues can be found

in [39]. In several of the previous works, strong assumptions

are made on the depth distribution within a given scene. For

example, the work in [21] classifies shots into long shots and

other shots (e.g., medium shots, close-ups, etc.), where long

shots are for large field view. Long shots are assigned a depth

ramp for the field and a constant depth for the players. Similarly

in [36], players are detected and a constant depth is assigned

to them. This, however, causes the well-known ‘card-board

effect’ where supposedly 3D objects appear flat on the screen.

Data-driven methods are an alternative way of computing

depth maps. A relatively coarse depth estimation is provided

in Hoiem et al. [17], where a scene is segmented into planar

regions, and an orientation is assigned to each region. Konrad

et al. [23], [22] use a database of image and depth map

pairs to infer the depth of an input image. Their work is

designed for still images and assumes that images with similar

gradient-based features tend to have a similar depth. For a

query image, the depth is estimated as the median over the

depths of the most similar images from the database. In [22],

geometrical differences between the query and a candidate

match is compensated through SIFT-flow [28]. Karsch et

al. [20] extended this approach to image sequences. They also

use a large database of image and depth map pairs. Similar

to [22], for a query frame, they find the most similar images

in the database and warp the retrieved images to the query

image using SIFT-flow. Finally, to estimate the final depth, the

warped depth maps are combined by optimizing a cost function

with spatial regularization in mind. The work in [20] is the

closest to ours and we compare against it.
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Fig. 1: The proposed 2D-to-3D conversion method.

There are a few commercial products that provide automated

2D-to-3D conversion, sold as stand-alone boxes (e.g., JVC’s

IF-2D3D1 Stereoscopic Image Processor, 3D Bee), or software

packages (e.g., DDD’s TriDef 3D). While the details of these

systems are not publicly known, their depth quality is still an

outstanding issue [39].

III. SYSTEM OVERVIEW

An overview of the proposed 2D-to-3D conversion method is

shown in Fig. 1. We infer depth from a database of synthetically

generated depths. We collect this database from video games.

With the high quality of current video games, which has come

close to that of real videos, using a synthetic database offers

two main advantages: 1) we can obtain a diverse database from

different camera angles, teams, and stadiums; and 2) we can

obtain accurate depth maps with perfect discontinuities. We

discuss our synthetic database in Sec. IV-A.

For each query image, we transfer the depth gradients from

the synthetic database to the query image by dividing the query

into blocks and copying the depth gradients from the matching

blocks in the database. This is quite different from previous

approaches that use absolute depth over the whole frame [23],

[20]. Our approach offers finer depth assignment to smaller

objects (e.g., players), while requiring a much smaller database.

This is because we match small blocks instead of the whole

frame, and blocks have much less variety than frames.

After the depth gradients have been transfered, we recover

the depth from these gradients by using Poisson reconstruction.

Poisson reconstruction is a robust technique traditionally used

to recover an image from its gradient information by solving

a Poisson equation [33], [8]. We enhance the Poisson recon-

struction formulation such that it utilizes temporal gradients

in addition to spatial gradients. Our spatio-temporal Poisson

reconstruction enables the generation of temporally smooth

depth maps. Our depth estimation method is discussed in

Sec. IV.

In order to maintain clear object boundaries, we create object

masks and allow depth discontinuities on object boundaries

by modifying the Poisson equation. We present two different

methods for creating object masks, one for close-up shots and
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the other for non close-ups. In order to distinguish these two

types of shots, we implemented a simple shot classification

method. Sec. V discusses our object mask creation methods.

Finally, we use the stereo-warping technique in [20] to

render the left and right stereo pairs using the 2D frames

and their estimated depth. In this technique, a 2D frame is

warped based on its estimated depth such that salient regions

remain unmodified, while background areas are stretched to

fill unoccluded regions.

IV. GRADIENT-BASED CONVERSION

The core of our system is depth estimation from depth

gradients; for an input 2D video, depth is inferred from our

synthetic database. Fig. 2 outlines this process. For a 2D query

frame, we first search the database for the K nearest frames.

Using these K candidates we create a matching image block by

block, where for each block we choose the best matching block

from the K candidates. We then copy the depth gradients from

the matched blocks to the query frame. Finally the depth is

reconstructed from these copied gradients by solving a Poisson

equation. We now discuss each step in more detail.

A. Synthetic Database

Many databases of RGBD (Red, Green, Blue and Depth)

images [2], [1], [5] and videos [20], [3] have been created.

The depth channel is acquired using techniques such as time-

of-flight imaging [35] (e.g., using Microsoft Kinect). However,

none of the current RGBD databases can be used for sports

events. Acquiring depth maps for sports events is challenging

since it requires the depth to be captured in sunlight conditions

and in a highly dynamic environment. In order to address this

challenge, we propose to create a Synthetic RGBD (S-RGBD)

database from video games. Current video games have very

high image quality and a large quantity of content can be easily

generated from them.

To collect our S-RGBD data we use PIX [4], a Microsoft

Directx tool, to extract image and depth information from the

FIFA13 video game. PIX records all Directx commands called

by an application. Each recorded frame can be rendered and

saved by re-running these commands. In addition, PIX allows

access to the depth buffer of each rendered frame. We extracted

16,500 2D+Depth frames from 40 different sequences. Each

sequence has a frame rate of about 10 fps, and each extracted

frame has a resolution of 1916 × 1054. These 40 sequences

cover a wide range of shots that can occur in a soccer match,

including a variety of camera angles, color variations and

motion complexities. Two of the 40 sequences are designed

to capture the common scenes throughout a full game. Each

one has a duration of 6− 7 minutes. The rest of the sequences

are shorter (15− 60 seconds) and focus on capturing special

and less common events such as behind the goal, close-ups,

and zoomed on ground views. Our database includes different

stadiums, teams, seasons and camera views.

B. Block-based Matching

For each frame of the examined video we first identify

the K (= 10 in our work) most similar frames in our S-

RGBD database by preforming visual search. The two main

features used for visual search are: GIST [31] and Color. The

former favors matches with overall similar structure, while

the latter favors matches with overall similar color. For color,

we use the hue channel in the HSV color space and create a

normalized histogram of hue values with six equal-width bins.

We then apply binary thresholding to represent only dominant

colors (those with hue below 0.1 are ignored), and concatenate

GIST and the thresholded color histogram to form the final

image search descriptor. Fig. 3(b) shows 4 samples of the K

candidates for the frame in Fig. 3(a).

Using the K candidate images we construct a matched image,

which is an image similar to the examined frame. The matched

image provides a mapping between the examined frame and the

candidates, where each pixel in the examined frame is mapped

to a corresponding candidate pixel. While such mapping can be

performed using a global approach by warping the candidates to

the examined frame, such as [20], this requires strong similarity

between the examined frame and the database. For example, an

examined frame with 4 players requires the database to have

an similar image. Therefore, we use a local approach instead,

where similar images are constructed using block matching.

This provides a more robust matching. For example, a good

matching can be performed between two images even if they

are acquired from different angles and different locations, and

have a different number of players. This can be seen in the

example in Fig. 3 where the images in Fig. 3(b) were used to

create the high-quality matched image in Fig. 3(c), which may

not have been possible using the global approach in [20]. One

of the advantages of our local approach is that it can achieve

good results without requiring a massive database, which is

highly desirable since, as discussed in Sec. IV-A, creating an

accurate 3D database is difficult.

For constructing the matching image, the examined frame

is first divided into n × n blocks. In all of our experiments,

we set n to 9 pixels. Each block of the examined frame is

then compared against all blocks in the K candidate images.

We compare blocks based on their block descriptors. The

block whose block descriptor has the least Euclidean distance

with that of the examined block is chosen as the corresponding

block. For block descriptor, we concatenate the SIFT descriptor

calculated for the center of the block with the average color

of the block. The average color is a three-dimension vector

containing the average of R, G and B color channels separately.

Note that the candidate images are all re-sized to the examined

frame size. RGB values are normalized between 0-1. To capture

more representative texture, the SIFT descriptor for each block

is calculated on a larger patch of size 5n × 5n. Fig. 3(c)

shows the matched image using our block matching approach.

Notice that the horizontal playing field is matched with the

horizontal field, the vertical advertisement boards are matched

with vertical blocks, and the tilted audience are also matched

with the audience.

Note that for a faster matching, we compute the image search

descriptors, the block descriptors, and the depth map gradients

for all frames in the database beforehand and store them as the

database. Therefore, in practice, there is no need to actually

store the RGB frames and depth maps of the database frames,
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Fig. 2: The main components of the data-driven depth estimation method: For a 2D query frame, we first search the synthetic

database for the nearest frames. Using these candidates we choose the best matching block for each query block. We then

copy the depth gradients from the matched blocks and reconstruct depth from these gradients using a spatio-temporal Poisson

formulation.

         (a)                                                       (b)                                                       ( c)                                     (d)

        (e)                                                 ( f)                                                 (g)                                                   (h)

Fig. 3: The effect of different steps in the proposed depth estimation method: (a) Query, (b) Subset of K matching candidates,

(c) Created matched image, (d) Object boundary cuts, (e) Depth estimation using Poisson reconstruction, (f) Effect of gradient

refinement, (g) Final depth with object boundary cuts, and (h) A zoomed and amplified version of the yellow block in g.

which saves a considerable amount of storage, in addition to

reducing the processing time.

C. Spatio-temporal Poisson Depth Estimation

To produce a smooth depth within and across all frames,

we first copy depth gradients from the matched image to the

query frame. We then use Poisson reconstruction to estimate

the depth map from these copied gradients. However, in

order to have a depth that is smooth through time and space

we extend the Poisson reconstruction technique to a spatio-

temporal formulation. In addition, gradient refinement and

object boundary cuts are used to reduce artifacts and maintain

clear depth discontinuities, respectively.

Computing Depth Gradients: Given a query frame and its

matched image, we copy the corresponding depth gradients

in blocks of n × n pixels from the matched image to the

query frame. By depth gradients we refer to the first order

spatial derivatives of the depth for both horizontal and vertical

directions (Gx, Gy).

Poisson Reconstruction: We reconstruct the depth values

from the copied depth gradients using the Poisson equation:

( ∂2

∂x2
+

∂2

∂y2

)

D = ∇ ·G, (1)

where G = (Gx, Gy) is the copied depth gradient and D is

the depth we seek to estimate. ∇ ·G is the divergence of G:

∇ ·G =
(∂Gx

∂x
+

∂Gy

∂y

)

. (2)

In the discrete domain, Eq. (1) and Eq. (2) become Eq. (3)

and Eq. (4), respectively:

D(i, j + 1)+D(i, j − 1)− 4D(i, j)+

D(i+ 1, j) +D(i− 1, j) = ∇ ·G(i, j).
(3)

∇ ·G(i, j) = Gx(i, j)−Gx(i, j − 1)+

Gy(i, j)−Gy(i− 1, j).
(4)

To estimate D, we formulate the problem in the form of

Ax = b, where b = ∇·G, x = D, and A stores the coefficients
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Fig. 4: Construction of matrix A of the Poisson equation. (a)

An example 4 × 4 image, showing a sample pixel p and its

neighbors. (b) The coefficients of Eq. (3) for pixel p. (c) The

non-zero values in A for the row corresponding to pixel p.

of the Poisson equation (Eq. (3)). For a query image of size

H × W , A is a square matrix with size HW × HW . Each

row in A corresponds to a pixel in the query frame, and the

values in the row correspond to the coefficients of Eq. (3).

Fig. 4 illustrates setting up A for a small sample image. Note

that since one or more neighbors do not exist for the image

boundary pixels, the value of ∇ ·G in these pixels is updated

by removing the terms in Eq. (4) that refer to non-existing

neighbors. Finally, given Ax = b, we solve for x. An example

of the reconstructed depth (x) is shown in Fig. 3(e). In can

be seen that the overall depth structure is captured, however,

there are some artifacts present (see the lower right corner of

Fig. 3(e)). Such artifacts are often caused by the inaccuracy in

SIFT matching. For example, in Fig. 3(c) some field blocks

are matched to non-field areas. If a query block from a region

that is expected to have smooth depth (such as the field) is

incorrectly matched to a reference block that has sharp changes

in depth (such as player borders or the goal), small artifacts in

the depth map can occur due to the sharp gradients that were

transferred from the reference block. To avoid this problem, we

perform gradient refinement, which reduces the large gradients

before solving for x. Then using our object masks we impose

depth discontinuities in the proper places. We describe these

two steps in the following.
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Fig. 5: The refinement factor of Gx for α = 60.

Gradient Refinement: To reduce the errors caused by

incorrect block matchings, we multiply the depth gradients by

a refinement factor:

Gx = Gx × max( 1− e
(1− 1

α |Gx|
)
, 0 )

Gy = Gy × max( 1− e
(1− 1

α |Gy|
)
, 0 )

(5)

This refinement exponentially reduces large gradients, which

may be incorrectly estimated, while maintaining low gradients.

Thus, it removes sharp artifacts while maintaining the rest of

the image intact. The refinement strength is configured by the

parameter α. A high α can corrupt correct gradients, while a

low α can allow artifacts. In our experiments, we set α to 60.

Fig. 5 shows the refinement factor for Gx when α is set to

60. It can be seen that while the factor is 1 for small values

of Gx, it drops to zero as the gradient starts to grow. Fig. 3(f)

shows the effect of gradient refinement on depth estimation

for Fig. 3(a). In comparison to Fig. 3(e), artifacts are removed

and depth is smoother.

Object Boundary Cuts: When performing Poisson recon-

struction each pixel is connected to all its neighbors. This causes

fading of most object boundaries, especially after gradient

refinement where strong gradients are eliminated (see Fig. 3(f)).

We solve this issue by modifying the Poisson equation on object

boundaries and allowing depth discontinuities. To do so, we

use object masks, whose creation is discussed in Sec. V. Given

object masks, we first use the Canny edge detector to detect

edges (see Fig. 3(d)). We then disconnect pixels from the object

boundaries by preventing them from using an object boundary

pixel as a valid neighbor. For each pixel neighboring a boundary

pixel, the corresponding connection in A is set to 0 and its

∇ ·G value is updated accordingly. Hence, pixels adjacent to

object boundaries are treated similar to image boundary pixels.

The object boundaries generated for Fig. 3(a) are shown in

Fig. 3(d). The final estimated depth when cutting the object

boundaries is shown in Fig. 3(g). The players in Fig. 3(g) are

more visible compared to Fig. 3(f).

Spatio-temporal Poisson Reconstruction: While the dis-

cussed Poisson reconstruction technique produces plausible

results, one of its main limitations is that it does not account

for temporal smoothness. If the depth estimation is performed

independently for each frame, the generated depth maps are not

temporally smooth and can vary significantly between consecu-

tive frames causing a flickering effect. While this limitation can

be partially handled by temporally smoothing the depth maps

during a post-processing phase, it is much more effective if we

eliminate the problem from the source, and enforce temporal

smoothness during the core depth estimation process. In order to

do so, we enhance the Poisson reconstruction formulation such

that it utilizes temporal gradients in addition to spatial gradients

when reconstructing the depth. That is, instead of computing

the depth of each frame independently, the information from

the next and previous frames is also considered.

One of the main challenges, however, is utilizing this tempo-

ral information in the depth estimation process without limiting

its parallelizable feature. Being parallelizable is an important

aspect of our method, which enables processing different frames

in parallel due to their independence. Considering temporal
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information, however, introduces dependence among frames.

Therefore, in order to maintain the parallelizable feature, we

determine a window around each frame and process each

window independently. Within each window the depth maps

of all frames are generated together and coherently. The final

depth map for each frame is the average of all depth maps

generated for that frame in different windows. While a bigger

window size can achieve an overall better temporal coherence,

it will significantly increase the computational complexity and

decrease efficiency. Our experiments in Sec. VI-C show that

a window size of 3 (one frame before and one after) yields

good results, and not much gain can be achieved by further

increasing the window size.

For each window, we perform block-based matching, depth

gradient mapping and refinement for all frames. We then

enforce temporal smoothness by modifying Eq. (3) as in Eq. (6)

for each of the frames within the window. In Eq. (6), Dnext and

Dpre refer to the next and previous frames respectively, and

(ic, jc) refers to the corresponding pixel in the neighbouring

frame. In order to identify the corresponding pixels between

each two consecutive frames, we use optical flow [27], which

computes the horizontal and vertical displacements for all pixels.

For the first and last frames in the window for which one of

the neighbours does not exist, the non-existing connection will

be removed.

D(i, j + 1) +D(i, j−1)− 6D(i, j)+

Dnext(ic, jc) +Dpre(ic, jc)+

D(i+1, j) +D(i− 1, j) = ∇ ·G(i, j).

(6)

Temporal smoothness implies that the depth value of each

pixel and its corresponding pixels in the next and previous

frames should be similar. In other words, temporal smoothness

implies that the temporal gradient should be set to zero. As a

result, while the left hand side of Eq. (6) is an extension of

Eq. (3) which includes temporal neighbours in addition to the

spatial ones, ∇ ·G(i, j) is still calculated using Eq. (4) which

includes only the spatial gradients.

When formulating a solution in the form of Ax = b, we

generate the matrix A according to Eq. (6) such that it contains

all frames in the window. Thus the size of A will be HWN ×

HWN , where N is the window size. Finally, we concatenate

b and x for all frames in the window, and solve for the depth

maps (x).

Note that since neither the optical flow nor the object masks

are perfect, there is a chance that a pixel marked as an object

(according to the mask) is recognized as a corresponding pixel

to a non-object pixel in the neighbouring frame or vice versa.

Establishing such temporal connections can cause fading of

the object boundaries, as the two sides of the boundary will

be connected through a temporal route. In order to solve this

problem we first make sure that each two corresponding pixels

have the same mask value before establishing a connection

between them. Otherwise, we would remove the temporal

connection by setting the corresponding connection in A to 0.

Creating the Final Output: To form the final converted

2D+Depth output, we normalize the estimated depth maps

in each window between (0, 255) collectively and combine

them with the query images. Our method produces a smooth

depth that correctly resembles the depth of the players, field

and spectators. Furthermore, the ‘card-board effect’, where a

constant depth is assigned to each player, does not occur in our

method. We show this by zooming-in on a player depth block

in Fig. 3(g) and amplifying it by normalizing the depth values

of the block to the range of (0, 255). The zoomed and amplified

version of the yellow marked block in Fig. 3(g) is shown in

Fig. 3(h). The player in the marked block demonstrates the

strength of our gradient-based approach in estimating small

depth details. It can be seen that different body parts of the

player have different depth values.

V. OBJECT MASK CREATION

In order to have clear depth discontinuities on player

boundaries, we delineate object boundaries. If object boundaries

are not specified, the depth of players will blend with the

ground, causing degradation in the depth quality. To detect

object boundaries we first create object masks. These masks

are created automatically in a pre-processing step where

motion and appearance are used to detect objects. While

object segmentation for videos with simple motion or static

scenes can be performed using methods such as [19], it is

rather challenging for videos with complex motion. Therefore,

we propose two different methods for object detection: one

for close-ups, and another for non close-ups. Close-ups are

characterized by small playing areas and large player sizes,

while non close-ups usually have a larger field of view. As

a result, a shot classification step is required prior to object

detection. Shot classification takes an input image sequence,

finds the shot transitions and classifies each shot as either close-

up or non close-up. Based on the type of shot the appropriate

object detection method is then applied. The method for non

close-ups is mainly based on global features such as the color

of playing field, while for close-ups, local features such as

feature point trajectories [29] are used. In this section we

discuss each step in details.

A. Shot Classification

Our shot classification stage has two main components: shot

transition detection and shot classification. In shot transition

detection, an input sequence is segmented into different shots

by detecting the shot transitions. While there are several

sophisticated techniques for handling shot transition detection

[24], we designed a simple shot transition detection step suitable

for our 2D-to-3D conversion method. Our implementation

is designed to detect temporal impulsive changes in the

frame structure. We predict each frame from its next frame

using optical flow [27] and then estimate the global structure

similarity between the original and predicted frame using

SSIM (Structural Similarity) [37]. A frame is flagged as a

shot transition if: the global SSIM value is smaller than a

certain threshold (0.7 in our experiments), and it increases in

the next frame by at least 0.1. In other words, if the similarity

between the predicted and original frames is low but it increases

considerably as we move to the next frame, then there is a

high chance that there is a shot transition.
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Fitted convex hull 

Non up 

C  

Original frame Detected field area 

Fig. 6: Shot classification: An example of the detected field

area, and the area covered by the fitted convex hull, for a

close-up (top row) and non close-up (bottom row) frame. Red

lines show the boundaries of the fitted convex hulls.

The second step is to differentiate between two types of

shots: 1) close-ups and 2) non close-ups. A close-up is defined

as a shot with a small field area and large players. We use

a color-based approach to detect the field area. We train a

Gaussian Mixture Model (GMM) [9] on samples collected

from the playing fields and the white lines. In the test phase

we estimate the log-likelihood of each pixel being generated

by the learned GMM model. If the log likelihood is more than

a threshold (−15 in our experiments), it is flagged as field area.

The second discriminative cue for close-ups is player size. We

exploit the observation that in close-ups, players often have

a large size and the audience/ad banners are usually behind

the player upper-body. Hence to measure the players size, first

we invert the detected field so that white pixels indicate the

non-field area. Then for each connected component, we fit a

minimum convex hull and choose the largest one as the fitted

convex hull for that frame. For closeups, the fitted convex hull

takes a large portion of the field area due to its large player

size. This does not happen in non close-ups. Fig. 6 shows an

example for a close-up and a non close-up frame. The red lines

show the boundaries of the fitted convex hulls. Finally, for the

entire shot, we find the percentage of pixels detected as field

(A1) and the percentage of pixels covered by the fitted convex

hulls (A2). A close-up is then detected if 0.5(1−A1)+ 0.5A2

is larger than a certain threshold (0.3 in our experiments).

Note that player segmentation is an important step in our shot

classification. Player segmentation techniques require moderate

color contrast between the foreground and background, which

is the field in here. This was the case in the examined sequences

and hence we did not experience much problems during shot

classification. In addition, our selection of a shot classification

threshold of 0.3 helped us in mitigating possible problems. One

way to address the limitations of low players’ color contrast is

to incorporate structural information as silhouettes. This can be

achieved by benefiting from the latest segmentation techniques

through deep learning [18]. Another option is to train a CNN

solution to directly classify the shots by implicitly learning

deep features [15].

B. Object Detection for Non Close-up Shots

Object masks for non close-up shots are a fusion of

background subtraction and non-field areas. The latter is

estimated during the shot classification step. However, relying

only on field detection to detect players can have a high

miss rate. This is often the case for players of similar color

to the field. Hence to generate a more complete detection,

we fuse the field detection results with that of background

subtraction. Background subtraction is a well-known technique

in video processing [20]. In this technique, first a homography

is generated by warping all frames with respect to a reference

frame (in our case it is the first frame). We use the method

by Odobez et al. [30] with affine motion modelling to

build our homography. This technique can accommodate a

moderate amount of translational camera motion. The stationary

background is then detected using temporal median filtering.

Frame differencing between each frame and the stationary

background is used to find the moving objects, which in our

case are the players.

In order to further reduce player segmentation errors, we

correct for possible misalignments between the frames and the

stationary background through optical flow [27]. We perform

frame differencing using the local SSIM values for each pixel

and the motion computed by optical flow. A pixel is flagged

as a moving object if: 1) the similarity between that pixel in

the frame and the stationary background is low (SSIM less

than 0.4 in our experiments), and 2) the motion divergence

in that pixel is high (higher than 0.01 in our experiments).

Motion divergence measures the rate of spatial changes in

motion [13]. Hence it is low in regions with high similarity

(such as the field) and high otherwise (for players). The final

object mask is generated by a logical OR between the field

detection based and background subtraction based approaches.

Note that accurate background subtraction requires regular

update of the underlying background model. However, we

found through experimentation that this is more problematic

when the examined scene undergoes strong global illumination

variation such as an abrupt change in weather or lighting. This,

however, was hardly the case in the processed sequences.

Fig. 7 shows an example of a non close-up object mask cre-

ation. Note that some detected players are small when using the

field-only method, but are fully detected using the background

subtraction approach (green boxes). The opposite is true as

well (yellow box). The fusion of both approaches nevertheless

brings the best of both worlds with all players being fully

detected. Note that the use of multiple cues with conservative

thresholds during background subtraction reduces the possibility

of ghosting artifacts. Such conservative thresholds, however,

could lead to players’ under-segmentation. Nevertheless, when

fused with the results of player segmentation with color

thresholding (i.e. field detection), more complete player masks

are generated.
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Non close-up frame Final  object mask

 

  

 Background subtraction
  

  

Non-field detection
  

 

  

Fig. 7: An example of object mask creation for non close-ups. For a more complete detection of players, the final object mask

is generated as a fusion of the non-field detection and the background subtraction approach. For instance, players in the yellow

box are missing from the background subtraction approach, while the players in the green boxes are small when using the

field-only method. However the final mask recovers the missing players and generates a more-complete object mask.

C. Object Detection for Close-up Shots

In order to detect players in close-up shots we use a combi-

nation of frame-to-frame motion and feature point trajectories

to obtain foreground and background matting strokes. Matting

is then performed using these strokes and the generated mattes

can be used as object masks after thresholding. However, in

order to achieve cleaner results, we use field detection to

remove possible mis-classified field areas.

Sparse trajectory  
segmentation  

Frame-to-frame  
motion    

Approx. non-camera  
motion segmentation 

Non-camera  
motion trajectories

Dense trajectory  

segmentation  

(Matting) 

Object
segmentation Field removal  

and threshold 

 (foreground)

Camera  
motion trajectories

(background)

Feature point  
trajectories 

Fig. 8: For a close-up shot, a combination of feature point

trajectories [29] and frame-to-frame motion [27] is used to

generate background and foreground matting strokes. The

method in [25] is then used to extract a dense players matte.

Finally, field segmentation removes matting inaccuracies.

Frame-to-frame motion is estimated through the optical flow

method in [27], which provides us with a color coded flow

field. We fit a GMM [9] to the color coded flow field, and take

the cluster with the most dominating Gaussian distribution as

the camera motion segment. All other clusters are considered

as the non-camera motion segment. This segmentation often

has poor object boundaries and is not temporally coherent (see

Fig. 8, approx. non-camera motion segmentation). Hence it

can not be used directly as object masks. Instead we combine

it with sparse trajectories segmentation to obtain foreground

and background matting strokes.

Sparse trajectories segmentation is obtained through extract-

ing feature point trajectories and segmenting them into different

groups [29]. This generates a sparse labelling for different

objects (see Fig. 8, sparse trajectory segmentation).

In order to combine sparse trajectories segmentation with

non-camera motion segmentation we estimate the overlap of

each trajectory segment with the non-camera motion segment. If

there is at least a 30% overlap, we label the trajectory segment

as foreground (see Fig. 8, foreground), else background (see

Fig. 8, background).

The feature point trajectories become the matting strokes and

the method by Levin et al. [25] is used to extract a soft-mask of

the players (see Fig. 8, matting). We then correct possible field

mis-classifications by using the field detection of Sec. V-A.

This generates cleaner player boundaries. Finally, we threshold

the generated mattes by 0.3 and get the final object masks (see

Fig. 8, object segmentation).

VI. EVALUATION

All components of our proposed method have been imple-

mented and compared against the closest system in the literature

[20], and the ground-truth where available. For our experiments,

both real and synthetic sequences have been considered.

Note that the few parameters in our method are experimen-

tally tuned once for all sequences. Specifically, we set the

number of candidate images K to 10, the block size n to 9,

and the gradient refinement parameter α to 60.
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Fig. 9: Depth estimation for different types of shots using our method. Our method handles a wide variety of shots including

Close-ups (e.g., top, left-most), Medium Shots (e.g., bottom, left-most), Bird’s Eye View (e.g., bottom, right-most) and Long

Shots (e.g., top, right-most).

A. Examined Methods

Our 2D-to-3D conversion technique, which we refer to as

DGC (short for Depth Gradient-based Conversion), is compared

against several techniques as described below.

Original 3D: The original 3D-shot video that has been

captured by stereo cameras. Results are compared subjectively.

Ground-truth Depth: Ground-truth depth maps are only

available for synthetic sequences. As described in Sec. IV-A,

they can be extracted from FIFA13 using PIX [4].

DT: The state-of-the-art method for data-driven 2D-to-3D

conversion, Depth Transfer [20], trained on its own MSR-V3D

database. MSR-V3D is available online and contains videos

that have been captured using Microsoft Kinect.

DT+: Depth Transfer trained on our synthetic S-RGBD

database. As stated in [20], capturing depth using Kinect is

limited to indoor environments. This in addition to its erroneous

measurements and poor resolution, limits Kinect’s ability in

generating a large soccer database. In order to have a rigorous

comparison, we trained Depth Transfer on our soccer database

and compared it against our technique.

Depth from Stereo: For an objective comparison of our

method against the original side-by-side 3D, we need to

approximate the ground-truth depth. We do so using the stereo

correspondence technique in [10]. While stereo correspondence

techniques do not always produce accurate results, they can

sometimes capture the overall depth structure and thus be used

for objective analysis.

B. Subjective Experiments

To assess the visual 3D perception we perform several

subjective experiments, and compare our method against the

original 3D and DT+. We then demonstrate the benefits of

our spatio-temporal Poisson reconstruction, especially for more

temporally challenging scenes.

1) Setup: Our subjective experiments are conducted accord-

ing to the ITU BT.2021 recommendation [6]. This recom-

mendation suggests three primary perceptual dimensions for

3D video assessment: 1) Picture quality, in terms of pixel

resolution and the impact of compression. This dimension is

mainly affected by transmission and/or encoding. 2) Depth

quality, which measures the amount of perceived depth. 3)

Visual (dis)comfort, which measures any form of physiological

unpleasantness due to 3D perception, e.g., headache, eye strain,

and fatigue. In our experiments, we measure depth quality and

visual comfort. We do not examine picture quality as we do

not degrade it using compression or transmission. Note that

we realize that artifacts may appear during stereo synthesis

due to depth imperfections, but such artifacts will be captured

by the depth quality and visual comfort dimensions.

The test sequences were displayed on a 55” Philips TV-set

with passive polarized glasses. The lighting conditions were low.

According to the ITU recommendations, we set the duration of

each sequence to be between 10−15 seconds, and the viewing

distance to be around 3m for videos with a resolution of

1280×720 and around 2m for 1920×1080. We used static and

dynamic random dot stereograms to test subjects’ stereoscopic

vision prior to the experiment. A stabilization phase was

also performed before the actual experiments, where the

subjects were asked to rate 4 representative sequences with 3D

qualities ranging from best to worst. While these representative

sequences were not part of the actual test, this phase was

useful in stabilizing the subjects’ expectations and making them

familiar with the rating protocol. The subjects were asked to

ensure their full understanding of the experimental procedure

prior to the actual test.

2) Evaluation of our Technique: For evaluating our 2D-to-

3D conversion method, we show the subjects our converted

sequences, and measure their average satisfaction. We assess

depth quality and visual comfort for four real soccer sequences

using the single-stimulus (SS) method of the ITU recommen-

dations. We carefully created the four soccer sequences using

clips from original 3D videos such that each includes a different

category of shots: long shots, medium shots, close-ups, and

bird’s eye view. A long shot shows almost the entire field from

a high camera position (Fig. 9, top right-most). In medium

shots the camera is placed at a lower height and a smaller

part of the field is visible (Fig. 9, bottom left-most). Close-ups

have the camera zoomed on one or few players (Fig. 9, top

left-most). In a bird’s eye view the camera is placed above the
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Fig. 10: Mean opinion scores of depth perception and visual

comfort for different types of soccer scenes.

field (Fig. 9, bottom right-most). Fifteen subjects participated

in this study. The sequences are shown to subjects in random

order. Before displaying each sequence, a 5 sec mid-grey field

is displayed which indicates the coded name of the sequence.

The 10 − 15 sec sequence is then displayed, followed by a

10 sec mid-grey field which asks the subjects to vote. The

standard ITU continuous scale is used for rating. For depth

quality, the labels marked on the continuous scale are Excellent,

Good, Fair, Poor, and Bad, while for visual comfort the labels

are Very Comfortable, Comfortable, Mildly Uncomfortable,

Uncomfortable, and Extremely Uncomfortable. We asked the

subjects to mark their scores on these continuous scales. Their

marks were then mapped to integer values between 0-100 and

the mean opinion score (MOS) was calculated.

The MOS for all four sequences is shown in Fig. 10. For

all sequences, DGC was rated in the range of Excellent by

most subjects. Examples of estimated depth maps are shown in

Fig. 9. Note how DGC can handle a wide spectrum of video

shots, including different camera views and clutter.

In addition, in order to show the potential of our method on

field sports other than soccer, we examined four real non-soccer

sequences containing clips from Baseball, Tennis, Field Hockey

and American Football. However, it is important to note that

these sequences are only meant to show the potential of our

method, as the soccer database was actually used for converting

them. For a high quality conversion of such sequences a proper

database should be designed. The results show that Field

Hockey achieved the highest score (Excellent) as it resembles

soccer the most, while the lowest score was for American

Football (Good).

3) Comparison against Original 3D: We compare our con-

verted videos against videos that are originally shot using stereo

cameras. For this experiment, the Double Stimulus Continuous

Quality Scale (DSCQS) method of the ITU recommendations

is used. According to DSCQS, in order to assess the differences

between each pair of sequences (original 3D and our converted

3D) properly, each pair should be observed by subjects at least

twice prior to voting. Fifteen subjects participated in this study

as well. The sequences were shown to them in random order

without them knowing which is the original one. We then

asked the subjects to rate depth quality and visual comfort for

both sequences using the standard ITU continuous scale. Their
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Fig. 11: Difference mean opinion score (DMOS) between our

converted sequences and the original 3D. Zero implies that our

converted sequence is the same as the original 3D.

marks are then mapped to integer values between 0-100 and

used for calculating the Difference Opinion Score (= score for

DGC - score for original 3D). Finally we calculate the mean

of the difference opinion scores (DMOS).

A DMOS of zero implies that our converted 3D is judged

the same as the original 3D, while a negative DMOS implies

our 3D has a lower depth perception/visual comfort than the

original 3D. The DMOS of the soccer sequences for both depth

quality and comfort is shown in Fig. 11. It can be seen that

our conversion achieves comparable quality to the original 3D.

This is especially true for long shots which account for around

70% of a full soccer game [12]. It is interesting to note that

for some subjects our conversion was more comfortable than

the original 3D. They reported that the popping out effect in

original 3D was sometimes causing discomfort.

4) Comparison against State-of-the-Art: We compare our

conversion technique against Depth Transfer (DT+) [20].

Similar to the previous experiments, the study is done with

fifteen subjects, the DSCQS method is used, and the DMOS

is calculated for both depth quality and comfort. For this

experiment, we examined the close-up and medium shot

sequences since they are the most challenging sequences for

2D-to-3D conversion due to their wide spectrum of camera

angles, occlusion, clutter, and complex motion. Fig. 12 shows

Medium Shot Close−ups
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Fig. 12: Difference mean opinion score (DMOS) between our

converted sequences and Depth Transfer DT+. Positive DMOS

means that our technique is preferred over DT+.
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Original DT DT+ DGC Original DT DT+ DGC

Fig. 13: Depth estimation for different sequences using: DT, DT+ and our method DGC. DT generates erroneous estimates,

DT+ generates noisy measurements and does not detect players. Our technique outperforms both approaches.

DMOS for the medium shot and close-up against DT+. DT+

is outperformed by our method with an average of 12 points

in close-ups and 15 points in medium shots. In addition, our

technique was rated higher or equal to DT+ by all 15 subjects

and the differences reported are statistically significant (p-value

< 0.05). Fig. 13 shows some examples of extracted depth maps

for DT, DT+ and our DGC. Note that as it can be seen in

Fig. 13, the original implementation of Depth Transfer (DT)

is much worse than DT+. Furthermore, it can be seen from

Fig. 13 and Fig. 15 that the depth from DT+ can be very noisy

sometimes, which in long term can cause eye strain.

5) Effect of Spatio-temporal Poisson Reconstruction: As

discussed in Section IV-C, estimating depth independently for

each frame may result in significant difference between the

depth of consecutive frames. While simple shots may not suffer

much from this problem and have a temporally smooth depth

without the need of any further temporal enhancements, shots

with complex and detailed texture, such as close-ups, may suffer

from significant variations in the depth maps of successive

frames. This may degrade the quality of depth perception and

cause visual discomfort.

While temporally smoothing the depth maps during a post-

processing phase works well for simple shots, it cannot

completely overcome the problem for temporally complex shots.

Our spatio-temporal Poisson reconstruction method, however,

generates temporally and spatially smooth depth maps by

utilizing temporal gradients in addition to spatial gradients

during the depth calculation process. Thus, it can handle all

types of shots and generate a comfortable and temporally

smooth depth for all cases.

To assess the performance of our spatio-temporal method,

we created two 10 sec sequences. The first one is composed

of various shots from the four soccer sequences used in the

previous experiments, which are all rather simple to handle.

We refer to this sequence as Temporally Simple. The second

sequence is composed of various temporally complex soccer

shots that are difficult to handle. In the figures, we refer to this

sequence as Temporally Complex. The shots included in this
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(a) Temporally Simple sequence
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(b) Temporally Complex sequence

Fig. 14: Mean opinion scores of depth perception and visual comfort for two sequences of different temporal complexity, where

three methods are compared: our spatio-temporal Poisson reconstruction, temporal smoothness as a post-process, and without

temporal smoothness.
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        Ground-truth Depth DT DT+ DGCSynthetic frame 

Real frame Depth from Stereo DT DT+  DGC

Fig. 15: Top row: Frame 3 of a synthetic sequence. Bottom row: Frame 24 of a real sequence. We show the depth extracted using:

Ground-truth/Stereo Correspondence [10], DT, DT+ and DGC. Our technique DGC best resembles the Ground-truth/Stereo

Correspondence in both sequences.

sequence were not included in the four sequences previously

used.

We showed the subjects three versions of each sequence: 1)

Without any temporal smoothness. 2) Temporal smoothness

applied as a post-process on the depth maps generated by a

regular (spatio) Poisson reconstruction. For this we use the

temporal smoothness provided by Karsch et al. [20] as part

of their stereo-warping technique. 3) Temporal smoothness

integrated in the depth generation process using our proposed

spatio-temporal Poisson reconstruction, without any further

post-processing refinements. We then assess depth quality and

visual comfort for all sequences using the single-stimulus (SS)

method of the ITU recommendations.

Ten subjects participated in this study. We showed them

the sequences in random order and they were asked to rate

depth quality and visual comfort using the standard ITU

continuous scale. Fig. 14(a) shows MOS for the three versions

of the Temporally Simple sequence. It can be seen that while

no temporal smoothness causes degradation in the comfort

and thus the depth quality, it can be fully resolved by post-

processing. As a result, there is very little difference between

the results of our spatio-temporal reconstruction and that

of post reconstruction smoothing. However, the benefits of

our spatio-temporal reconstruction become more clear in the

Temporally Complex sequence, where post-processing is unable

to fully overcome the problem. Fig. 14(b) shows MOS for this

sequence. It can be seen that our spatio-temporal reconstruction

improves the comfort by an average of 14 points compared to

post reconstruction smoothing, and enhances the quality from

Good to Excellent. The differences reported in this figure are

statistically significant (p-value < 0.05).

C. Objective Experiments

We perform objective experiments on both real and syn-

thetic sequences to measure the quality of our depth maps

and compare it against the state-of-the-art. We then analyse
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Fig. 16: An objective comparison between our DGC method

and the closest method in the literature DT, and its extension

DT+ on a synthetic soccer sequence.

the effect of our spatio-temporal Poisson reconstruction on

temporal smoothness, and the effect of database size on depth

quality.

1) Comparison against State-of-the-Art: For an objective

comparison against state-of-the-art, we choose two sequences:

a synthetic sequence and a real sequence. For the synthetic

sequence we extract 2D+Depth for around 120 frames in the

same way that the database was created (Sec. IV-A). In Fig. 15

(top) a frame of the synthetic sequence is shown followed by

its ground-truth depth and estimated depth when using different

methods (DT, DT+ and our DGC). All demonstrated depth

maps are normalized and in the range of (0−255). Results from

DT are largely erroneous since the data in MSR-V3D hardly

resembles soccer. While being trained on our database makes

the results from DT+ significantly better, most players are yet

not detected. Our technique DGC, however, manages to detect

the players and generate a smooth depth that best resembles
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ground-truth. The Mean Absolute Error (MAE) against ground-

truth for the whole synthetic sequence is shown in Fig. 16. As

shown it the figure, the MAE of our method is much less than

both DT and DT+.

Due to the absence of ground-truth depth for real sequences,

performing objective analysis on them is challenging. In [20],

Kinect depth was used as ground-truth. However, Kinect is inca-

pable of capturing depth information in outdoor environments.

As a result, Kinect cannot be used for generating ground-truth

estimates for soccer matches. Instead, given a 3D-shot soccer

sequence, we use stereo correspondence [10] to approximate

the ground-truth depth map. Fig. 15 (bottom) shows a frame

from one of the most challenging test sequences. Its extracted

depth, though not perfect, captures the overall depth structure

and can be used for inferring the quality of the converted depth

maps. The estimated depth maps using DT, DT+ and our DGC

are also shown in Fig. 15 (bottom). It can be seen that our

technique (DGC) best resembles the ground-truth. In addition,

our objective experiments over a range of 100 frames show

that DGC reduces MAE 17% and 48% on average compared

to DT+ and DT respectively. Figure is omitted due to space

limitations.

2) Effect of Spatio-temporal Poisson Reconstruction: In

order to demonstrate the advantage of our spatio-temporal

Poisson reconstruction, we use the same two real and synthetic

sequences (shown in Fig. 15). For each sequence, we generate

the depth maps using a temporal window size of: one (without

temporal smoothness), three (one frame before and one after),

and five (two frames before and two after). Fig. 17 shows

the average depth values for each frame of the synthetic

sequence. It can be seen that without temporal smoothness the

scene experiences sudden changes from frame to frame, but

the changes become smoother as the window size increases.

Also, without temporal smoothness the difference between the

maximum and minimum average depth value is around 70,

while with temporal smoothness it is reduced to around 15.

Results for the real sequence (figure is omitted due to space

limitations) also show that while without temporal smoothness

the difference between the maximum and minimum average

depth value is around 110, this value is reduced to around 50
when temporal smoothness is applied.

Fig. 18 shows the MAE between the depth of each frame

in the real sequence and its previous frame. Each pixel is

compared to its corresponding pixel in the previous frame,

where the corresponding pixels are identified using optical flow.

It can be seen that applying temporal smoothness significantly

reduces the MAE. However, there is not much gain in increasing

the window size from 3 to 5. MAE results for the synthetic

sequence (figure is omitted due to space limitations) also show

that the MAE is reduced from a maximum of 57 (without

smoothness) to a maximum of 3 (window size of 5).

3) Effect of Database Size: To investigate the importance of

our S-RGBD database size we examined six different database

sizes: 1000, 2000, 4000, 8000, 13000 and 16000 images. For

this experiment, a synthetic sequence with 120 frames was

generated. This sequence includes a wide variety of shots that

can occur in a soccer match. Results show that up to a size

of 8,000 images, due to the absence of big enough data the
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Fig. 17: The average depth values for each frame of a synthetic

sequence, when using different temporal window sizes. While

without temporal smoothness the scene experiences sudden

changes of depth, the depth changes are much smoother when

temporal smoothness is applied.
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Fig. 18: Mean Absolute Error (MAE) between each two

consecutive frames of a real sequence, when using different

temporal window sizes.

performance fluctuates around an MAE of 30. Starting from

13,000 images there is a boost in performance which reduces

MAE to around 20. However, the performance stabilizes around

16,000 images (Figure is omitted due to space limitations).

Thus, a database of 16,500 images was used in our evaluation.

VII. CONCLUSIONS AND FUTURE WORK

We presented a 2D-to-3D video conversion method for soccer

videos that, unlike previous methods, can handle the motion

complexities and the wide variety of scenes present in soccer

matches. Our method transfers depth gradients from a synthetic

database of soccer videos and estimates depth through a spatio-

temporal Poisson reconstruction. We implemented our method

and used both real and synthetic sequences for evaluating it.

Our subjective and objective results show the capablity of our

method in handling a wide spectrum of shots with different

camera views, colors, motion complexities, occlusion, and
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clutter. Our created 3D videos were rated Excellent by most

subjects. In addition, our method outperforms the state-of-the-

art both subjectively and objectively, in all real and synthetic

sequences.

This paper contributes three key findings that can impact

the area of 2D-to-3D video conversion, and potentially 3D

video processing in general. First, domain-specific conversion

can provide much better results than general methods. Second,

transferring depth gradient on a block basis not only produces

smooth natural depth when reconstructed using Poisson, but it

also reduces the size of the required reference database. Third,

synthetic databases created from computer-generated content

can easily provide large, diverse, and accurate texture and depth

references for various 3D video processing applications.
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